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1.0 Preliminaries 

1.1 Definition of Scientific Problem: 

This report is an investigation of time-frequency representations of radar signals 
with a view to accurately detect small differences between radar returns. This objective is 
congruent with BMDO objectives of being able to detect target from decoy using active or 
passive sensing methods. 

1.2 The Aim 

The aim of this work is to provide computational methods in signal analysis which 
will permit: 

• the detection of both target scattering centers and resonances. 

• ultrahigh resolution imaging of targets. 

• the use of pattern recognition techniques in resolving small differences in surface 
conduction between targets and decoys. 

1.3 State of the Art Benchmark from which BSEI Research Proceeds 

Radar means ranging and detection and the detection process is a level detection. 
The signal used to "paint" a target is usually of a duration that in length it is longer than the 
target length. Therefore the target becomes a "point scatterer" and level detection of the 
target is all that can be used. If the target is stationary - which is not the case in the BMDO 
scenario - multiple signal returns can be obtained from the target and using cross range and 
doppler analysis a synthetic aperture radar (SAR) can achieve target imaging. Imaging can 
also be achieved if the radar is stationary and the target is moving - a process which is the 
geometrical inverse of SAR and and known as inverse synthetic aperture radar or ISAR. 
BMDO does utilize stationary radars but only late in the trajectory of an incoming missile. 
In both instances of SAR and ISAR the synthetic aperture methods change the target from 
being a point scatterer to a multiple scatterer. Furthermore, the conventional methods of 
target imaging, SAR and ISAR, require not merely a wide signal bandwidth, but also a 
long imaging time. Clearly, the BMDO mission is served optimally, if there are methods 
for causing the target to be a multiple scatterer, but which require neither the radar nor the 
target to be stationary, and which also do not require a long imaging time. In fact, there is a 
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such a method and it requires the transmitted signal in space to be less than the length of the 
target. 

If the transmitted signal in space is less than the length of the target, the signal 
return from the target decomposes into its individual scattering components. That is to say, 
there is a unique signature from the nose, the fins, the tail, etc. Furthermore, if the signal 
return is not averaged but is received as a fast sampled time series preserving amplitude, 
phase frequency and perhaps polarization modulations, i.e., is homodyned, as opposed to 
heterodyned, the speed of the currents set up on the surface of the target would have a 
unique signature. In other words, there is reason to expect that the surface material 
composition would differentiate signals returns from targets identical in size but differing in 
material composition. In which case, a signature would be available distinguishing a 
missile from a decoy, which has a different material composition. Also, the imaging time is 
far less than that required by SAR and ISAR and could be on the order of one pulse 
transmit time. 

Given a radar which transmits signals shorter than the length of designated targets, 
which - as it performs more than just ranging and detection - might be called a sensor, the 
next problem to be addressed is that of return signal analysis. Because in SAR, ISAR and 
very short pulse radar the target consists of a number of scatterers - discontinuities, 
cavities, corners, etc. and each provides a different backscattering behavior, a first set of 
signature characteristics identifying the target is the backscattering (from a multiple 
scatterer). A second set of signature characteristics consists of the resonances of the target. 
To preserve in analysis the first set of characateristics requires precision in the time 
dimension; to preserve in analysis the second set of characteristics requires precision in the 
frequency dimension. The state of the art in analysis would be to use wavelet methods for 
precision in the time dimension and Fourier analysis for precision in the frequency 
dimension. The present work's objective is to provide (adaptive) methods which provide 
precision in both the time and frequency dimensions. 

The requirement of analysis precision in both time and frequency is occasioned by 
other factors. A very short pulse interacting with a larger target elicits there types of 
responses: (1) the early time response; (2) the resonance response; and (3) the late time 
response. The first, the early time response, is due to currents being set up on the surface 
of the target and is target aspect-dependent. The second, the resonance response, is 
dependent on the length of the target and is aspect-independent in harmonic components but 
aspect-dependent with respect to the amplitude of those harmonic components. The third, 
the late time response, is due to the delayed "ring down" of the target after "painting" by the 
signal and its physics is similar to that of the resonance response. Clearly, target 
identification should be based on a mix of the three kinds of response with their differemg 
aspect dependencies. 

Another major departure of the present work from the state of the art is in the nature 
of the method of target identification. The method is neither level detection as in 
conventional radar, nor imaging as in conventional SAR and ISAR. The new method is 
pattern identification. Given time-frequency methods preserving both the backscattering 
center signatures and resonances from a multiple scattering target, the identification method 
would be by pattern identification in the time-frequency plain. 

In summary, we offer methods different from state-of-the-art for solving the 
BMDO problem of providing an ultrahigh resolution sensor which can identify missile 
from decoy. We advocate pulses shorter than the length of the target, adaptive time- 
frequency analysis methods which preserve target backscattering centers and resonances, 
and pattern identification of target and decoy. 



1.4 Deficiencies in State of the Art Addressed by BSEI Research 

BMDO lacks an active high resolution sensor as well as the capability of detecting 
missiles from debris and decoys. A short pulse sensor is smaller in size, weight and power 
than conventional radars and requires a smaller antenna. Therefore a short pulse sensor can 
be deployed either on satellites or as a missile seeker. 

The state of the art in conventional radars can only achieve high resolution in the 
SAR or ISAR configuration. The former requires a stationary target with a moving radar 
and the latter requires a moving target with a stationary radar. A short pulse system does 
not have such requirements to achieve high resolution. Denied the SAR and ISAR 
configurations, conventional radars achieve target identification by level detection. 
Therefore a target missile cannot be distinguished from a decoy. A short pulse system 
achieves a signal return which can be analyzed using time-frequency methods and target 
can be distinguished from decoy by pattern matching techniques. 

1.5 Implementation by BMDO 

The implementation of a short pulses sensor/radar together with the correct time- 
frequency approaches to processing is straightforward if a development program is 
initiated. Alternatively, simulation and modeling can take place using the VDHTB testbed. 

1.6 What is new, innovative in BSEI's research results and what are the 
implications? 

1.6.1 New   methods   for   achieving    discrimination   of   both   frequency- 
dependent aspects of the target and time-dependent scattering centers. 

The Adaptive Gabor Representation (AGR) was used to analyze a radar signal 
return in two forms: the functions were either varying Q or constant Q. We found the 
constant Q form is optimum. Frequency hopping signals as well as monocycle pulses were 
analyzed with the AGR and the Combined Wigner-Ville Distribution of the AGR 
calculated. It was shown that with all frequency components combined the frequency 
components of the signal can be identified, but not the pulse. However, when the 
Combined Wigner-Ville representation of the AGR is calculated using only the high 
frequency components of the latter, it was seen that the monocycle can be detected. Thus, 
these methods seems entirely appropriate for detecting the frequency-dependent and the 
time-dependent (transient) scattering centers of targets. 

The AGR and the Combined and Single Wigner-Ville Distribution of the AGR were 
calculated for frequency hopping signals, pulses and radar return signals The AGR requires 
finding the optimum wavelet center frequency, optimum dwell and optimum modulating 
envelope. The hypothesis under test was that whereas the AGR has been viewed as an 
optimization with respect to three variables: ap, t0 and/0, with ccp setting the envelope size 
independently of the other two variables, use of a constant Q Gabor wavelet would permit 
an efficient optimization using only one variable - ap - with the other signal parameters 
functions of that one variable. It is shown that the constant Q Gabor wavelet with f0.t0 
=£f.M = 1/2, is optimum and that only one variable is required for optimization. 

1.6.2 New wavelet analysis 

A new wavelet analysis was developed based on orthogonal parabolic cylinder or 
Weber functions of increasing level described by the expansions: Af.At = f0.t0 = 1/2 (2n + 



1) n=0 1 2, (i.e., Constant Q Orthogonal Weber Function Wavelets (WFWs). Using 
a frequency hopping and pulse test signals, these wavelets are able to detect both resonance 
and pulse scattering features. Using scattergram plots between three levels of wavelets and 
two scale dilations, unique features of both the test signal and radar return signals can be 
demonstrated. This research is unique in two respects: using orthogonal wavelets of 
different levels and in the scatterogram cross-comparison of three levels of analysis, which 
can provide unique signatures for targets. In the case of the test signal of a frequency 
hopping signal, plus a pulse, it is seen that discernible cyclic patterns occur which may be 
correlated with the number of frequencies in the signal - four. In the case of the radar return 
test signal, it is seen that recognizable helical patterns occur, which may provide a unique 
signature for targets. ,    „m,r .   ,      .      r,   , 

Using a frequency hopping and pulse test signals, WFWs permit detection of both 
resonance and pulse scattering features. The characteristics of these wavelets are based on 
HF filter principles. It is customary to believe that a discrete time scaling (low pass) wavelet 
is first necessary to obtain the discrete time (high pass) wavelet. Here we show that the 
expansion method permits an estimate of the continuous time high pass wavelet from the 
summed Fourier spectra of the expansions, n = 1, 2,... °°. Future work will examine 
whether repeated analysis of the original signal by higher order wavelets is equivalent to the 
customary method of using but one scaling function and one wavelet with signal 
decimation. 

1.6.3 Instantaneous phase information. 

Instantaneous phase information was obtained from application of wavelet analysis. 
A detailed thumbprint of a complex (target return) signal can be obtained which can be used 
as data supporting a detailed wavelet modulus description of the same signal. A result is 
obtained by calculating the differential phase which also provides supporting data. There 
are also optimum dilations for providing correlated measures. 

The probability distribution function for the target return signal processed with a 
specific dilation of the wavelet and the mutual information for two dilations also provides 
supporting data to the modulus thumbprint of the signal. 

The phase information and mutual information provide excellent supporting data to 
that providing by the wavelet modulus. In combination a more detailed analysis of target 
information is possible. 

1.6.4 Target Differentiation. 

Differentiation of two target return signals was accomplished using (1) wavelet 
processing and (2) fractal analysis of the results of that wavelet analysis. Log-Log plots 
(amplitude versus filter scale) revealed stable distributions (as opposed to asymptotically 
Gaussian distribution) behavior - increasing in the case of one signal, and decreasing in the 
case of the other. This is a fractal property. The computed fractional dimension per time bin 
revealed clear differences between the two signals. The Fano factors for means across 
filters and for each time bin were also computed. There is a clear difference in the Fano 
factor patterns generated permitting the differentiation of the signals. Thus, fractal analysis 
appears to be a promising approach to differentiating signals and will be further explored in 
future months. 

1.6.5 Nonlinear Collective Exzcitations. 

Analyses in terms of (a) higher-order symmetries; (b) differential forms; and (c) 
group theoretic, and formulations in electromagnetic theory of the role of the A-field in (a) 
nonlinear collective excitations in a 2-dimensional electron gas; and (b) solitons in new 
SAW devices and heterostructures in general. The method of generation of modulated 



TeraHertz pulses  utilizes a plasma mirror dependent on  the  formation  of  soliton 
transmission. 

1.6.6 The Bootstrap Method. 

The Bootstrap method was used for estimating the accuracy of a paramater 
estimator taken, in the instances addressed, as radar signal returns. We demonstrate - for 
the first time to our knowledge - that the technique can be applied to distinguish targets. We 
also apply techniques taken from fractal theory and deterministic chaos theory to show that 
radar returns have both a fractal nature and are not time series produced by a random 
mechanism, but rather by a deterministic chaotic mechanism. We are able to show that the 
fractal properties of the power spectra, the variance and Fano Factor distinguish between 
two target returns. Use of embedding dimensional analysis also reveals the deterministic 
chaotic, as opposed to random, nature of the radar returns. 

1.7 Implications of this research 

This research provides time-frequency methods for analyzing sensor/radar signal 
returns to achieve ultrahigh resolution and the possibility of distinguishing target from 
decoy. The research also indicates the advantage of deploying a short pulse sensor/radar, in 
which the pulse is shorter than the length of the target. 

1.8 Future work 

The completed work addressed a number of new research areas which require much 
more development time than was given in the limited time available in the present contract. 
These areas include: Constant Q Orthogonal Weber Function Wavelets, application of the 
Bootstap method, fractal analysis methods and the Adaptive Gabor representation. The 
development of these areas can take place in a simulation environment. 

1.9 Future needs 

To conduct future work in these areas there are two requirements: (1) a source of 
realistic signal returns from missiles and decoys; and (2) a testbed implementation, e.g., the 
VDHTB. Alternative to the testbed implementation using computer analysis of the signals, 
the algorithms described in the present work could be implemented in ASIC or hardware 
designs. However, the preference would be to firstly test the algorithms in a testbed and 
then proceed to hardware implementation. 

2.0 Summary of Results of Contract DAAG55-98-C-0044 

These reported investigations of time-frequency representations of radar signals 
were acrried out with a view to accurately detect small differences between radar returns. 
This objective is congruent with BMDO objectives of being able to detect target from 
decoy. 

2.1 Representative radar data was analyzed with (1) continuous Gabor wavelets; (2) 
ambiguity functions; and (3) Wigner-Ville distributions, in order to determine the optimum 
form of analysis for the RF sensor returns. 

2.2 We are able to show the superiority of the wavelet method and the usefulness of 
Gaussian differential wavelets in detecting local differences in the smoothness of the decay 



of transitions in the signal. The capability of detecting such differences may be critical in 
discriminating targets from decoys. In the case of the spectrogram, we showed that the 
method can pick out well the onset and offset of the various modulations in the signal. 
However, due to the fact that the window is constant (even although the modulated 
frequency of the kernel is changing), the spectrogram provides a biased representation of 
the signal as the sampling window excludes the influence of signal components outside the 
unchanging windowed "box". The spectrogram is thus not an optimum representation of 
signals and future work will demonstrate how to amend the spectrogram method to obtain 
wavelet representations from a similar commencement. 

2.3 New methods were developed for achieving heightened discrimination capability. The 
action of the Zak Transform in achieving this aim was investigated using a radar return 
signal exemplar with variance of the Zak summing variable k. It was shown that 
discrimination capability of fine structure is lost as the range of k increases. In order to 
investigate improvements in discrimination capability, the Zak transform was performed 
not on the radar exemplar but on the radar exemplar after Gabor analysis with kernels of 
various sizes. It was shown that there are distinctive patterns for each of the kernels used. 
Therefore a radar return signal can be analyzed into a 4-dimensional pattern signature when 
the results of the analysis patterns of multiple kernels are summed. This method holds 
promise for increasing fine discrimination capability. 

2.4 New methods were developed for achieving discrimination of both frequency- 
dependent aspects of the target and time-dependent scattering centers. The Adaptive Gabor 
Representation (AGR) was used to analyze a radar signal return in two forms: the functions 
were either varying Q or constant Q. We found the constant Q form appears optimum. 
Frequency hopping signals as well as monocycle pulses were analyzed with the AGR and 
the Combined Wigner-Ville Distribution of the AGR calculated. It was shown that with all 
frequency components combined the frequency components of the signal can be identified, 
but not the pulse. However, when the Combined Wigner-Ville representation of the AGR 
is calculated using only the high frequency components of the latter, it was seen that the 
monocycle can be detected. Thus, these methods seems entirely appropriate for detecting 
the frequency-dependent and the time-dependent (transient) scattering centers of targets. 

2.5 New methods continued to be developed for achieving discrimination of both 
frequency-dependent aspects of the target and time-dependent scattering centers. The 
Adaptive Gabor Representation (AGR) and the Combined and Single Wigner-Ville 
Distribution of the AGR were calculated for frequency hopping signals, pulses and radar 
return signals The AGR requires finding the optimum wavelet center frequency, optimum 
dwell and optimum modulating envelope. The hypothesis under test was that whereas the 
AGR has been viewed as an optimization with respect to three variables: ap, t0 and/0, with 
a setting the envelope size independently of the other two variables, use of a constant Q 
Gabor wavelet would permit an efficient optimization using only one variable - ccp - with 
the other signal parameters functions of that one variable. It is shown that the constant Q 
Gabor wavelet with f0.t0 =Af.At = 1/2, is optimum and that only one variable is required 
for optimization. 

2.6 Investigations were initiated of wavelets based on orthogonal parabolic cylinder or 
Weber functions of increasing level described by the expansions: Af.At=f0.t0 = 111 (2n + 
1), n = 0,1,2,    (i.e., Constant Q Orthogonal Weber Function Wavelets (CQOWs). 
Using a frequency hopping and pulse test signals, these wavelets are able to detect both 
resonance and pulse scattering features. Using scattergram plots between three levels of 
wavelets and two scale dilations, unique features of both the test signal and radar return 



Signals can be demonstrated. This research is unique in two respects: using orthogonal 
wavelets of different levels and in the scatterogram cross-comparison of three levels of 
analysis, which can provide unique signatures for targets. In the case of the test signal of a 
frequency hopping signal, plus a pulse, it is seen that discernible cyclic patterns occur 
which may be correlated with the number of frequencies in the signal - four. In the case of 
the radar return test signal, it is seen that recognizable helical patterns occur, which may 
provide a unique signature for targets. 

2.7 Further investigation sof CQOWs showed that using a frequency hopping and pulse 
test signals, these wavelets are able to detect both resonance and pulse scattering features. 
The characteristics of these wavelets are based on HF filter principles. It is customary to 
believe that a discrete time scaling (low pass) wavelet is first necessary to obtain the 
discrete time (high pass) wavelet. Here we show that the expansion method permits an 
estimate of the continuous time high pass wavelet from the summed Fourier spectra of the 
expansions, n = 1, 2,... °°. Future work will examine whether repeated analysis of the 
original signal by higher order wavelets is equivalent to the customary method of using but 
one scaling function and one wavelet with signal decimation. 

2.8 Methods were developed addressing instantaneous phase information obtainable from 
application of wavelet analysis. We show that a detailed thumbprint of a complex (target 
return) signal can be obtained which can be used as data supporting a detailed wavelet 
modulus description of the same signal. We also show a result from calculating the 
differential phase which also provides supporting data. It is also shown that there are 
optimum dilations for providing correlated measures. 

We also calculated the probability distribution function for the target return signal 
processed with a specific dilation of the wavelet and the mutual information for two 
dilations. This form of analysis also provides supporting data to the modulus thumbprint of 
the signal. . 

The phase information and mutual information provide excellent supporting data to 
that providing by the wavelet modulus. In combination a more detailed analysis of target 
information is possible. 

2.9 Methods were developed addressing the differentiation of two target return signals 
using (1) wavelet processing and (2) fractal analysis of the results of that wavelet analysis. 
Log-Log plots (amplitude versus filter scale) revealed stable distributions (as opposed to 
asymptotically Gaussian distribution) behavior - increasing in the case of one signal, and 
decreasing in the case of the other. This is a fractal property. The computed fractional 
dimension per time bin revealed clear differences between the two signals. The Fano 
factors for means across filters and for each time bin were also computed. There is a clear 
difference in the Fano factor patterns generated permitting the differentiation of the signals. 
Thus, fractal analysis appears to be a promising approach to differentiating signals and will 
be further explored in future work. 

2.10 Analytical methods were developed in terms of (a) higher-order symmetries; (b) 
differential forms; and (c) group theoretic, and formulations in electromagnetic theory of 
the role of the A-field in (a) nonlinear collective excitations in a 2-dimensional electron gas; 
and (b) solitons in new SAW devices and heterostructures in general. The method of 
generation of modulated TeraHertz pulses utilizes a plasma mirror dependent on the 
formation of soliton transmission. Therefore an analysis was commenced of such soliton 
transmissions using the various approaches described. 

2.11 Analytical methods were developed based on the Bootstrap method for estimating the 
accuracy of a paramater estimator taken, in the instances addressed, as radar signal returns. 
Here, we show - for the first time to our knowledge - that the technique can be applied to 



distinguish targets. We also apply techniques taken from fractal theory and deterministic 
chaos theory to show that radar returns have both a fractal nature and are not time series 
produced by a random mechanism, but rather by a deterministic chaotic mechanism. We are 
able to show that the fractal properties of the power spectra, the variance and Fano Factor 
distinguish between two target returns. Use of embedding dimensional analysis also 
reveals the deterministic chaotic, as opposed to random, nature of the radar returns. 

3.0 Continuous Gabor Wavelets 

The Gabor wavelet kernel is: 

yf = Exp[-Zf]xCos(&). 

and in general: 

y(t) = g(t)Exp[i&], 

where g(t) is a Gaussian window: 

8(t) = 

1 

(**) 
TTäEXP 

2G
1 

with 4 = 
2<72 

The continuous Gabor wavelet transform is then defined as 

't-x\ W/(T,5) = 7/(r)4^: 

s  ) 
dt. 

Two examples of radar signal returns are shonw in Figs. 3.1A and 3.2A. The 
Gabor transforms, Wf(t,s), are shown in Figs. 3.1B-D and 3.2B-D, respectively. It can be 
seen that the two signal returns can be identified by 3-D pattern detection. 

Igt: i,sig; #0001 ,Az:-2*.9899997,A1:13.8099999» 

25      SO      7S     100     125     ISO     175 

Fig. 3.1 A. 1st example of radar signal return. 



Tgtl1,Si?: #0001,»i:-2«.9899997,11:13.8099999« Tgt:l,5ig:#OO01,fcz:-2*.9*9399?ril:13.8099999« 

Tgt:l,Sigi#0001,A2s-24.9*99997,Al:13.80999994 

D. 

Fig. 3.1B, C &D. 1st example of radar signal return after Gabor wavelet filtering - 20 filters used. 

Tgt:l,sig:#U62, Az: -22.5300006 ,Al:7.38000011* 

Fig. 3.2A. 2nd example of radar signal return. 
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Tgt:l,Sigs#ll 62, JLZ:-22.5300006 ,JLl:7.380OQ0114 Tgt:l,Sigi#1162,Az:-22.5300006,11:7.3*000011* 

2.5 5 7.5 10 12.5 15 17.5 20 

B. C. 
Tgt:lrSig:#U62,Iz:-22.5300006,il:7.380000114 

D. 
Fig. 3,2B, C & D. 2nd example of radar signal return after Gabor wavelet filtering. 
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4. Ambiguity Function. 

The ambiguity function is: 

Af (T,(0) = jf(t +1V t - -)Exp[-iüx]dt, 

or, in the frequency domain: 

C     co 
v-—\Exp[itv]dv, 

and measures the spread of the signal/ in time and of / in frequency, i.e., the energy 
concentration. Figs. 4.1A-C represents the energy spread of the radar return example 
shown in Fig. 3.1 A. 

X*rro*-Band Anbiguity Function Tgt:t,sig:#oooi ,li:-2l.989999?, 11:13.80999994 
x*rroK-B«nd >nbigaity nmctioo Tgt:l ,sicr:#oooi ,Ai:-2«.9899997,Al:l3.80999991 

**rrai-Band »ibiguity mncticn Tgt:l ,sig:#oooi ,xz:-2t.9899997,Al:l 3.00999995 

Fig. 4.1 A, B & C. First example: ambiguity function. 
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5.0 Wigner-Ville Distribution. 

The Wigner -Ville distribution is a quadratic form: 

Pvf(t,co) = jf(t + |V * (t - -)Exp[-icQT]d<r 

or 

Pvf{t,co) = J/L + £|f * (a - ^\Exp[-ivt]dv 

and defines a time-varying power spectrum for non-stationary processes. Simply stated, 
the Wigner-Ville transform is the cross-correlation of a signal with itself after a time and 
frequency shift. 

The two characteristics which make the Wigner-Ville distribution nonoptimal for 
signal analysis purposes are that it can take on negative values and that the presence of 
interference terms. Fig. 5.1 A. is an example of two Gabor signals. Figs. 5.1B-D show the 
Wigner-Ville transforms of those signals. The interference terms are clearly seen. 

0.5 

-0.5 

Fig. 5.1A. Two Gabor packets. 
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Kigner-fille, ixaiple 
Kigner-Yille, rxmpl« 

Kigner-Ville, Exiitple 

Fig. 5.1B, C & D. Wigner-Ville transform of 2 Gabor packets. 
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Fig. 5.2A-D are the Wigner-Ville transforms of the radar return example shown in 
Fig. 3.1 A. 

wigner-ville Function. Tgt:l,siffJ*0001rAz:-24>9899997/Al:l3.80999991 
Vigncr-ville Function Tgt:i ,sig:#oooi ,*x:-2«.9899997,Al:i3.80999991 

°OGCOCZ>      o OOCD < 

co^ra  0 oo) 
'.flfo  Do 

coracz>   DOÜC3* 
ocdocz>    o OOCO < 
codC3CI>    -DOQO. 

, 0L0 o o 
25 50 75 100 125 150 

B. 

wigner-ville Function Tgt:l,Sig:#oooi,Az:-24.9S99997,Al:i3.80999994 

Fig. 5.2A, B & C. Wigner-Ville Transform of 1st Example. 
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6.0 Wavelets compared with spectrogram 

6.0.1   Prologue. 
The radar signal shown in the following Fig. 6.1 is wavelet transformed in the 

examples to follow. The frequency chirp shown in Fig. 6.2 is used as an example in the 
spectrogram analysis. 

•rgt:l,Sig:#0001 ,AZ!-2*.9S99997,Al:13. 8099999« 

Fig. 6.2. Linear chirp f(t) = Exp[iat2]. 

The wavelet integral is defined: 

ft-u Wf(u,s)=\f(t)-U,- 
^  s 

dt. 

Calderon and, independently, Grossman and Morlet proved that if y/ e L2(9?) is a real 

function (that is, L2(91)represent finite energy functions such that:  f |/(r)| dt < +°°) and 
this real function is such that: 

16 



cv = l _ ?|v>H2 

CO 
dax+oo, Eq. 6.1. 

then 

\\fitfdt = ^-\\\Wf{u,sfdu% 

This proof demonstrates the possibility of wavelet decomposition of signals and is 
predicated on the conditions described by Eq. 6.1, which is called the admissibility 
condition. For the integral described by the admissibility condition to be finite, the wavelets 
must have an average of zero. 

6.1   Mexican hat wavelet. 

The wavelets equal to the second derivative of the Gaussian are Mexican hat 
wavelets. The normalized Mexican hat is: 

mmiprn; 
f t2 \ r   A \ 

Exp 
K    2C72

y 

Fig. 6. 3 shows an analysis of the radar return signal example (Fig. 6.1). It can be seen 
that use of this wavelet picks out the relevant features of the signal. 

Mexican bat Novelet;  Tgt:l,sig:#0001,fcz:-2«.3999397,Al:13.«0399994 
Mexican hat vavelet? Tgt:l,sig:#oooi,jiz:-2*.3893997,xl:13.80999994 

0 25 SO 75 100 125 150 175 0 25 50 75 100 125 150 175 

A. B. 
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weclean tut vtvelct;      Tgt:l .sig:#ooci,Jix:-2*.9899997,0.:i3.9099999« 

C. 
Fig. 6.3. Analysis of Radar example with Mexican hat wavelet 

6.2   Local Regularity of signals and Gaussian differential wavelets. 

Local signal regularity is characterized by the decay of the wavelet transform across 
scales. The local regularity of a signal,/(r), is characterized by the Lipschitz exponents at a 
point. Lipschitz regularity for a function, f(t), is defined: A function / is pointwise 
Lipschitz a > 0 at v if there exists K > 0, and a polynomial pv of degree m = [a J such that 

Vr e % \f(t) -pv(t)\ < K\t- v\a . Eq. 6.2. 

A wavelet transform estimates the exponent a if that wavelet has n > a vanishing moments: 

jtk\(r(t)dt = 0   for   0<k<n. 

A wavelet with n vanishing moments is orthogonal to polynomials of degree n - 1. Since a 
< n, the polynomial pv has degree at most n -1. Therefore: 

Wpv(u,s) = jpv(t)~(i/l t—Xlt = 0 

and since / = pv+ev, 

Wf(u,s) = Wev(u,s). 

It also follows that a wavelet with n vanishing moments can be written as the n* order 
derivative of a function 6. Fig. 6.4 below shows a wavelet transform of the radar signal of 
Fig. 6.1 calculated with y/ = -0, where 6 is a Gaussian. The resulting Wf(u,s) is the 
derivative of/averaged in the neighborhood of u with a Gaussian kernel dilated by s. 
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It is instructive to continue the analysis beyond the first derivative, due to the 

following theorem: Let y/ = (-1)*0W with 0(f) = XExp 
2ß2 ■ !f f = fo*8a and/0 is 

uniformly Lipshitz a on [v - h, v + h], then there exists A such that: 

V(iM)€[v-£,v + Ä]x9r,   \Wf(u,s)\<Asa+1/2\l+ G 
.2   \ 

■2 „2 j8Z*: 

where ga is a Gaussian variance of o2: 

fc(0 = V2 ̂ (T 
■£xp 

r 
2a2 

Fig. 6.5 below shows a wavelet transform of the radar signal of Fig. 6.1 calculated 
with \ff = -8", where 6 is a Gaussian. Essentially, the above theorem describes how the 
wavelet transform decay relates to the amount of diffusion of a singularity. The difference 
between the analyses offered by Fig. 6.4 and 6.5 reflects the differences in the smoothness 
of the decay of transitions in the signal. These differences reflect variations in the signal 
which can be infinitely continuously differentiable. 

Gaussian Differential; Tgt:i ,sig:#0Q0l,,Ar:-24.9899997,Al:i3.«0999994 
Gaussian Differential;  vgtsi ,Sig:#00Ol,Az:-2».9899937,Al:i3.«0999994 
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Cttistlatt DIMertotlili      Tgtn ,eigi*oooi,*ti-21.M9is*7,tli 13.109999«« 

■■■y-'-y- 

c. 
Fig. 6.4. Analysis of Radar example with Gaussian differential wavelet Iff = -9 . 

Gaussian 2nd Differential: *gt:i ,Si<r:#oooi ,*i:-2«.9899997,»1:13.8099999* 
aeusxiart 2nd Diff«renti*!;  Tgt;l,Sig:#000l,JLt:-2l.9e»99»7,Jil:i3.B0»99m 

23 SO 73 100 123 130 173 0 25 50 75 100 125 150 17S 

A. B. 

C*ii»*L*n JTUI Di!i«rmti»li       Tgtil .ligiMflSt .ln-tt.tl*M»T.&lit3. 

Fig. 6.5. Analysis of Radar example with Gaussian 2nd differential wavelet \j/ = —6". 

6.3 Spectrogram 

The windowed Fourier transform requires a real and symmetric window g(t) ■ 
g(-t), which is translated by u and modulated at the frequency £: 
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gu4(t) = Exp[ify]g(t-u). 

It can be normalized llgll = 1, so that llga||| = 1 for any (K,£) e SR2. The resulting windowed 
Fourier transform / e L2(SR) is: 

+00 

Sf(u,S) = (f,g^)= \f{t)g{t-u)Exp[-^Yt, 

also known as the short time Fourier Transform. 

An energy density, called a spectrogram, Ps, can be defined: 

Psf(u,S) = \Sf(u4 \f(t)g(t-u)Exp[-i£t]dt 

Fig. 6.6 is the spectrogram of the linear chirp shown in Fig 6.2. Fig. 6.7 is the 
spectrogram of the radar signal example of Fig. 6.1. It may be seen that the spectrogram 
can pick out well the onset and offset of the various modulations in the signal. However, 
due to the fact that the window is constant (even although the modulated frequency of the 
kernel is changing), the spectrogram provides a biased representation of the signal as the 
sampling window excludes the influence of signal components outside the unchanging 
windowed "box". The spectrogram is thus not an optimum representation of signals and 
future work will demonstrate how to amend these methods to obtain wavelet 
representations from a similar commencement. 

Spectrogram; Linear Chirp 

30 
Spectrogram;  Linear Chirp 

15 

A. 
25 
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fpwetroQr»;    Lin**r Cfcirp 

Fig. 6.6. Spectrogram or energy density of a linear chirp. 

Spectrogram:       Tgt:l,sig:*0001 ,Az:-24.9839997,Al:l3.«0999991 
Sp*Ctrogr*»r   Tgt:l,Sig:#0001,Az:-24.9999997,Al:I3.809999S4 

^^■^m 

/ 

Fig. 6.7. Spectrogram or energy density of radar signal example. 

7.0   Zak Transform. 

The action of the Zak Transform was investigated using a radar return signal 
exemplar with variance of the Zak summing variable k. It was shown that discrirriination 
capability of fine structure is lost as the range of k increases. In order to investigate 
improvements in aUsoimination capability, the Zak transform was performed not on the 
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radar exemplar but on the radar exemplar after Gabor analysis with kernels of various 
sizes. It was shown that there are distinctive patterns for each of the kernels used. 
Therefore a radar return signal can be analyzed into a 4-dimensional pattern signature when 
the results of the analysis patterns of multiple kernels are summed. This method holds 
promise for increasing fine discrimination capability. 

7.1 Zak Transform Analysis 

The Zak transform1 of a function / € L2(9t) is: 

Zf(t,a) = F(t,co) = £/(r + k)Exp[2mka>],   (t,a>) e ft xft 
JfceZ 

and satisfies the quasiperiodicity relations: 

Zf(t + l,ö)) = Exp[-27äß}]Zf(t,co)   and   Zf(t,a> +1) = Zf(t,co). 

Therefore the values of the Zak transform are represented on the cube: 

O = [0,l)x[0,l), 

and the transform is a unitary mapping of L2(ft) onto L2(Q), where: 

L\Q) = {F : ||F«2 = (j\Q\F(t,a>fdtdco J 

The action of the Zak transform on a Gabor system {gmn} constructed with a = b = 
1 is: 

z(gm,n)(t,<») = Exp[2mmt]Exp[2mncü]Zg(t,G>), 

but Zg(t,co) = 1 for (t,(o) e Q. Therefore the Zak transform maps the orthonormal basis 

{gm,n} for £2(9*) onto the orthonormal basis {Exp[2mmt]Exp[2mnco]} for L2(Q). 

7.2   Relation of Zak Transform to Gabor Transform 

The signal, f(t), is represented in a Gabor expansion as: 

\l/2 -\ 

1 Daubechies, I., Grossman, A. & Meyer, Y. Painless nonorthogonal expansions. J Math Phys  27 
1271-1283, 1986; "    ' 
Daubechies, I., The wavelet transform, time-frequency localaization and signal analysis IEEE Trans Info 
Theory, 36, 961-1005, 1990; 
Heil, C. & Walnut, D., Continuous and discrete wavelet transforms. SI AM Review, 31,628-666, 1989; 
Janssen, A J.E.M., Bargmann transform, Zak transform, and coherent states. /. Math Phys  23 720-731 
1982; "     ' 
Janssen, A.J.E.M., The Zak transform: A signal transform for sampled time-continuous signals Philips J 
Res., 43, 23-69, 1988; 
Zak, J., Lattice operators in crystals for Bravais and reciprocal vectors. Phys. Rev. B, 12, 3023-3026,1975. 
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fM = Yl.a^{t-mT)Exp\i27ikUt\, 
m     k 

where the variable m is used in connection with a time shift, the variable k in connection 
with a frequency shift, and g(t) is the envelope of the elementary signal - and conceived in 
this case as the synthesis window2. Thus the Gabor expansion is the representation of a 
signal as the superposition of elementary packet signals, and the Gabor coefficients a^ 
represent the complex amplitude of a packet at time position mT and frequency kU. 

With an analysis window, y(t), corresponding to the synthesis window, g(t), the 
Gabor coefficients, a^, are determined by means of the Gabor transform: 

amk=jf(t)f(t-mT)Exp[-i27ckUt}it. 

Alternatively, the Gabor transform can be considered as a sampled version of the 
windowed Fourier transform Wj(t,u) of the signal f(t): 

Wt(t,u) = jf(t )y*(t -t)Exp[-i2mf]dt, 

on the rectangular lattice (t = mT,u = kU): a^ = W{jnT,kU). 

There are three sampling cases of note: 

(1) Critical Sampling - UT = 1 - for which there exists a unique relationship between the 
synthesis window, g(t), and the analysis window, y(t), and a synthesis window can be 
uniquely determined from a given analysis window. In the case of critical sampling, the 
Gabor signal expansion is related to the degrees of freedom of the signal. If a signal f(t) is 
limited to the time interval \t\ < 0.5 a and its Fourier transform to the frequency interval 
\u\ < 0.5 b, the number of degrees of freedom equals the number of Gabor coefficients in 
the time-frequency area ab, which is equal to the time-bandwidth product ab. In the case of 
critical sampling, the representation is not always stable. This instability is expressed 
formally by the Balian Low Theorem3. The stability problem can be overcome with 
multiwindows. A Gabor system is not only a frame (see below), but is also an exact frame 
(see below) if UT=l. 
(2) Oversampling -UT<l-for which such a unique relationship does not exist and there 
is no unique relationship between the synthesis window and the analysis window. A Gabor 
system is a frame, but not an exact frame when UT<\. 
(3) Under sampling - UT>\ - for which the sequence of representation functions is 
incomplete and therefore does not constitute a frame3. A Gabor system is incomplete and 
not a frame when UT>\. 

The Fourier transform of the expansion coefficients is: 

afarj) = (Fa)(£,77) = £ ^a^Expl-nnimri-kt)], 
m     k 

2 Bastiaans, M J., Gabor's expansion of a signal into Gaussian elementary signals. Proc IEEE 68 538- 
539, 1980. 
3 Daubechies, I., The wavelet transform, time-frequency localization and signal analysis IEEE Trans Info 
Theory, 36, 961-1005, 1990. 
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and it can be shown that in the case of integer oversampling, i.e., 1IU = pT, that4: 

a(&J7) = pTj^ffaT + kpT)Exp[-i2nk{pT){r)pU)} 
k 

x     X r(&T + ikP- m]T)Exp[-i27c(kp - m)T(7]pU] 
m 

Defining the Zak transform as: 

Zf (t, u; A) = X f(t + mA)Exp[-i27tmAu], 
m 

then the previous equation can be expressed using the Zak transform twice, with 
t = tpT,   u = TjpU,   A = pT for the/ft) expression and t = tpT,   u = rpU,   A = T for 
the y(t) expression. In terms of this Zak transform, the Fourier transform on the expansion 
coefficients is: 

a&ri) = pTZf{^pT,r\pU;pT)Z;^pT,ripU;T). 

7.3 Balian-Low Theorem 

We use the following definitions: 

II/I2 = (J|/(0|2<fr)     for the L2-norm of a complex-valued function/, or the energy of f, 
L2 being the space of all functions with finite energy. 

(f>8) = jf(t)8*(t)dt is an inner product on L2(9t). 

A sequence {fk} of functions in L2(SH) is orthonormal if: 

A sequence {fk} is a basis for L2(9t) if 

V/ e L2(5R),   3 unique scalars ck(f) such that / = £<:*(/)/*» where the basis elements 

are: ck(f) — (f,fk). For an orthonormal basis: 

V/EL
2
(SR),   f = ^{f,fk)fk 

k 

Plancherel's formula gives that the energy of/is related to the energy of the coefficients: 

4 Bastiaans, M.J., Gabor's signal expansion in optics, pp. 427-451 in Feichinger, H.G. & Strohmer, T., 
(Ed.s) Gabor Analysis and Algorithms, Birkhauser, Boston, 1998. 
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k 

A sequence {fk} is a frame if there exists Aß > 0 (the frame bounds) so that: 

V/eL2(*),   A\\ff2<Z\(f,fk)\2<B\\ffr 
k 

Therefore for a frame the energy \\ff2 of f is equivalent or related to the coefficient energy 

X|(/>/*}| -IfA=B, then the frame is tight. 
k 

For any frame {fk} there is a dual frame lfk jso that: 

V/eL2
(*),   f = Y{f,fk)fk=Z(f,fk)~fk. 

k k 

If the frame is a basis then c* = (f,fk) minimizes the energy Xlc*f- 
k 

A frame can be, but need not be, a basis. If a frame is a basis, then it is exact. A 
frame {fk} is exact if there is no single element/, which is deleted. A frame is a basis, if 
and only if, it is exact. Therefore an exact frame satisfies both the frame bound formula, 
above, as well as uniquely representing a function/in terms of frame elements, fk, or dual 
frame elements, fk. 

A Gabor system {g,^ „} is defined by: 

«mb.««(0 = Exp[2mmbt]g(t-na). 

With these definitions, the Balian Low Theorem (BLT) is: 

Let [g^<na = Exp[2mmbt]g(t-na)}mnez with a,b > and ab = 1 (i.e., it is an exact frame). 

As this Gabor system is an exact frame for L2(SR), then 

\\\tg{tfdt\]\yg{7fdr 
v- A- 

= +oo 

or 

lte(0UI)£(r)||2 = +00 

Benedetto et al5 point out that the BLT maximizes the classical uncertainty principle, which 
is: 

Let (t0,y0) e 91 x §t, then 

5 Benedetto, JJ., Heil, C. & Walnut, DP., Gabor systems and the Balian-Low theorem, pp. 85-122 in 
Feichtinger, H.G. and Strohmer, T. (Ed.s) Gabor Analysis and Algorithms: Theory and Applications, 

Birkhäuser, Boston, 1998. 
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V/ e L2(SK),   |/|g < An\{t- h)f{t)\2\{y- 7o)/(r)|2 

The crucial observation5 is that if a Gabor system {g^^} forms an exact frame, the right 
side of inequality is infinite when/is replaced by g. Essentially, the BLT states that an 
exact frame is a filter set of sampling windows with an infinite time-bandwidth product. 
Conversely, the uncertainty product states that there is a minimum time-bandwidth product 
for sampling windows. Therefore the exact frame Gabor system can be used to sample 
signals of any size time-bandwidth product, but there is a minimum time-bandwidth 
product into which any maximum time-bandwidth product can be analyzed. The condition 
ab = 1 can thus be interpreted as a Nyquist criterion. 

7.4   Exemplars 

The radar return signal exemplar is shown in Fig. 7.1 (top), together with Gabor 
analyzing functions, g^, for n = 1,2 and 5. Fig.s 7.2, 7.3, 7.4 and 7.5 show the pattern 
analysis of the radar exemplar for the Zak transform variable k = 1 to 5, 1 to 10, 1 to 15 
and 1 to 177. It can be seen that discrimination capability of fine structure is lost as the 
range of k increases. Thus, there is a loss of discriminated fine structure in the progression 
from Fig. 7.2 through to Fig. 7.5. 

In order to investigate improving discrimination capability, the Zak transform was 
performed not on the radar exemplar but on the radar exemplar after Gabor analysis with 
kernels of various sizes. Fig.s 7.6, 7.7 and 7.8 show the results. Fig. 7.6 is the Zak 
transform of the radar exemplar after filtering with the smallest Gabor analyzing kernel - A 
of Fig. 7.1; Fig. 7.7 uses the next largest - B of Fig. 7.2; and Fig. 7.8 uses the largest - C 
of Fig. 7.1. It can be seen that there are distinctive patterns for each of the kernels. 
Therefore a radar return signal - such as the exemplar - can be analyzed into a 4- 
dimensional pattern signature when the results of the analysis patterns of multiple kernels 
are summed. 

Tgt:l,Sig: £0001,Az:-24.9899997,41:13.80999994 
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-10 -5 10-10 -5 

B. gmn for n = 2 

C. g^ for n = 5. 

10 

o« gi 7'1' (T°P).ExemPlar of a radar signal used in the analysis. (Bottom) gm for varios n. 
läk Trmjten», k  , 5;  T9t:l.sij:«001 .ii:-2«.s«aMS7,»l:l5.«088S99, 

150 175 
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zak Translor», k = 5;      Tgt:l,sis:#0001,Az:-2«.9899997,11:13.8099999» 

c. 
Fig. 6.2. Zak transform of radar signal exemplar, for k = 1 to 5. 

zak Transform, li = 10: Tot:l,sig:#oooi,lz:-2».9899997,11:13.8099999« 
zak rransfora, k = 10: Tgt:l,sig:#oooi.iz:-2».9899997,11:13.« 

zak Transform, k = 10;      Tgt:l.sig5»ooi.l2:-2».9899997,11:13.8099999« 

Fig. 7.3. Zak Transform for k = 1 to 10. 
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UV Tranjroro, k ■ is; Tgt:l ,sig:*oooi,»z:-2<.9099997,»1:13.0099999«     ZA Transform, k , is; Tjt:i,sig:#oooi,»i!-2».9899997,»1:13. 

Z<k Trinjfor», k  . 15;      Tgt:l,sig:*00Ol ,»z:-2t.9:99997,»1:13.ao999m 

Fig. 7.4. Zak Transform for k = 1 to 15. 
Zlk Trmstor», k . 177; T9t:l.Sig:«0001,tz:-2».9»99997,»l:13.»099999t   I«k Tramlon.. k . 177: Tgt:l.si9:«0001 ,X«:-ä«.B««0»97.»l:lJ.»09S9I9I 

0       25      50      75     100     125     150     175      0       25      30      75      100     123     130     173 

A. B. 
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z*1c Transform, Tc . 177;  Tgt:l ,sig:#OO01 ,lx:-aa.g«ggg97,>.l:l3.«0999994 

•#*■•:-: 

mtMmm 

11111 

a 
Fig. 7.5. Zak Transform for k = 1 to 177. 

laic Traastorw of g<m,n), n » l,  k  =  sr  Tgtix,sigi#0OOl,Azi-2l.flB99997f 
Al:13.0099S9S* 

z*k Tr*nsfomi ol gC»*n). n = l. It = 177,  Tgt:l,sig:#oooi,lz:-21.909999T, 
Al:13.*09S9ÖS4 

25 SO 7S 100 125 

A. 
150 175 

ZAlt Transform of g(»,ti), n = 1, It = 177;      ?gt:i ,Sig:*000i,Az:-2».9899997, 
AlsI3.80999995 

25 50 75 100        125        ISO        175 

C D. 
Fig. 7.6. Zak Transform of gfm,«,), n = 1 (Bottom right), k = 111. 
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__^^_^____^__ Jkl:13.6099999t 

25     150     175 

Zak Transform of gC«,n), n . 2, V . 177;  ?gt:l,sig:#oooi,Ai:-2«.9899997, 
Al:13.80999994 

0.01 

-0.01 

?4 "Yf^ »^r^^. 

C D. 
Fig. 7.7. Zak Transform of g(m,n), n = 2 (Bottom right), k = 5. 
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la* Transform of g(n,Ti) , u s 5, It = 5; Tgt:l,Sig:#0001,Az:-24.9*99997 
41:13.80999904 

Z*JT^0»™ »  B0,''K'' " ■  = '  * = 177!   "*"•"«>»•<».»«-«..«»»». 

50 175 

idnmsion of gcw.u-). n = s. If . 177;     igt:i,sig:#oooi,iii:-2i.9»s39S7, 

25 50 " 100 125 150 175 

B. 

ß   ,#,4PM|r 

C D. 
Fig. 7.8. Zak Transform of gfm.nj, n = 5 (bottom right), £ = 177. 
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8.0 Adaptive Methods 

We addressed new methods for achieving discrimination of both frequency-dependent 
aspects of the target and time-dependent scattering centers. The Adaptive Gabor 
Representation (AGR) was used to analyze a radar signal return in two forms: Sie functions 
were either varying Q or constant Q. We found the constant Q form appears optimum 
Frequency hopping signals as well as monocycle pulses were analyzed with the AGR and 
Ae Combined Wigner-Ville Distribution of the AGR calculated. It was shown that with all 
frequency components combined the frequency components of the signal can be identified 
but not the pulse. However, when the Combined Wigner-Ville representation of the AGR 
is calculated using only the high frequency components of the latter, it was seen that the 
monocycle can be detected. Thus, these methods seems entirely appropriate for detecting 
the frequency-dependent and the time-dependent (transient) scattering centers of targets. 

8.1 Adaptive Gabor Representation (AGR)6 

The adaptive signal expansion is defined: 

p 

with the coefficients defined by: 

BP=H)- 
The aim is to find ^(t) which is most similar to s0(t), i.e., 

M = mAf \(spM\vt-      SteP h 

Residuals are defined by: 

Vi (0 = *,(0 - Bphp(t). Step 2. 

If the functions, hp(t), have unit energy: 

\\K(t)( = h 

then the residual energy is: 

___ 4v,ef - Mf -Kf- 
Qian, S., Chen, D. & Chen, K., Signal approximation via data-adaptive normalized Gaussian functions 

and its applications for speech processing. Proc. ICASSP-92, San Francisco, CA March 23-26 
1992, pp. 141-144. 

Qian, S. & Chen, D., Signal representation using adaptive normalized Gaussian functions Signal 
Processing, 36, No 1,1-11, March, 1994. 

Mallat, S. & Zhang, Z., Matching pursuit with time-frequency dictionaries. IEEE Trans Signal 
Processing 41, 3397-3415,1993. ' 
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Step 1 is repeated to find \ (r) as a match to s,(t), then Step 2 is repeated and so on as the 
residual signal converges to zero. It should be noted that, unlike the regular' Gabor 
expansion, as well as wavelets, the set [hp{tj\ will never be complete in L2, even if the 
residual converges to zero, because each set of adaptive elementary functions is unique to a 
particular signal. n 

As 

IK* = ±\Bp 
P=O 

and as 

^SJWVDhp(t,co)dtda) = \\hp(t)f = 1, 

the Adaptive Spectrogram (AS) can be defined as: 

AS(t,a»=%\Bp\2WVDhr(t,a>), 
p 

where it should be noted that the summation is over rows. 

The AS not only does not contain the cross-term interference of the Wigner-Ville 
distribution, it also satisfies the energy relation: 

\\s{tf =^-\\AS{t,co)dtd(o. 

The choice of h(t) is completely arbitrary. Following convention?, we choose the 
Gabor-type functions: 

hp(t) = te
v/4 

exp ~irH°,)2 e4v]' 
where 

At = 
2 a. «=¥-?> 

so that: 

A/.Ar = 
1 

7 Qian, S. & Chen, D., Joint Time-Frequency Analysis, Prentice-Hall, New York, 1996. 
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The Adaptive Gabor Representation (AGR) is then: 

S(t)=Xw) = X5, fa. V/4 

V n ) 
exp ~{t-t0p)

2 exp[z/o/] 

An important property of the AGR is that, unlike the Gabor expansion, for which the 
analysis and synthesis functions are not identical, the AGR has the same analysis and 
synthesis functions. The adaptive coefficients, Bp, are computed as follows: 

Bp = \spmp{t)dt = fe j,4J*,(0cxpr-^(r-^)2]cxp[-^r]A 

The AS can then be defined as: 

AS(r,6>) = 2£|ßJ2exp "p(f"^)2 + ^(ö"^)2} 
where again it should be noted that this is the summation of the Wigner-Ville distribution 
over rows. 

8.3   Wigner-Ville of the AGR. 

The Wigner-Ville joint time-frequency density function of the adaptive Gabor 
functions is: 

WVDhp(t,co) = 2exp 
. .     {(O-CD0) 

Testing the above definitions, the AGR was calculated of the representative radar 
return signal shown in Fig. 8.1. Two protocols were tried (Fig.s 8.2 and 8.3). In the first 
(Fig. 8.2) the AGR was calculated using 5 frequencies, 5 modulating envelope widths 
i.e., it is not a wavelet representation. The center frequency is set, then 5 modulating 
envelopes are applied in order to ascertain the maximum. In the second (Fig. 8.3) the AGR 
was calculated using a wavelet representation in which changing the center frequency 
changes the bandwidth, both temporal and frequency. Then the succeeding analysis is 
based on the residual. There is indication that the Gabor wavelet (Fig. 8.3) appears to be 
the optimum. 

The frequency hopping signal (Fig. 8.4) was analyzed using the AGR. Fig. 8.5 
shows that the AGR can pick out the individual signal frequency components. Fig.s 8 6 
and 8.7 shows the full AGR with bandwidths 2 x and 6 x the Gabor wavelet bandwidth. At 
6 x (Fig. 8.7) there is less precise timing identification. 

Next, a frequency hopping signal with a high frequency monocycle was analyzed 
(Fig. 8.8). The AGR is shown in Fig. 8.9 and it can be seen that both the frequency and 
the pulse components can be identified. The Combined Wigner-Ville of the AGR of Fig 
8.9 is shown in Fig. 8.10. It can be seen that the frequency components of the Fig. 8.8 
signal can be identified, but not the pulse. However,   when the Combined Wigner-Ville 
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representation of the AGR is calculated using only the high frequency components of the 
latter, it is seen that the monocycle can be detected. 

Vgt:l<Si?: #0001,AZ:-24.9899997,Al:l3.$0999994 

"     50     75     100    125    150    175 

Fig. 8.1. Representative radar return signal. 

s x s Adaptive «tor Hivelet Tgtii,(131*1001 ,Ait-2t.s8999a: Uni.«««»   5 x 5 Adaptive Gübor «velet Tgtii,tlgrfQooi,tI,-21.9B3M97,A1U3.ao99a991 

" IftO 123 150 175 0 25 50 75 100 J2S 150 ITS 

B 
sis id.pti.ve Gabor Kivelet Tgt:l ,sig:»001 ,izs-24.9899997,11:13.«0999994 

Fig. 8.2. Adaptive Gabor Representation (AGR) of the representative radar signal of Fig. 8.1. - 5 
frequencies, 5 modulating envelope widths. This is not a wavelet representation. The center frequency is set, 
then 5 modulating envelopes are applied in order to ascertain the maximum. 
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S x 9 idjptive Stbor KAI Tgtll,Cig»*OCOI,*ll-2*.9»»9»T,Hll3.80»3m   * »  5 Adiptivc C4b«r W*v*lct Vgtll,«iGn#OMt.Axi'24.SS*»M7,ftllI3.«0»»sn 

33 SO 71 100 

A B 
5X3 Adaptive Cabor Wavelet Tgtii,figi#O0Ol,Azi-24.9*99997,Alil3.«0999991 

133 130 ITS 

Fig. 8.3. Adaptive Gabor Representation (AGR) of the representative radar return signal of Fig. 8.1. This is 
a wavelet representation in which changing the center frequency changes the bandwidth both temporal and 
frequency. Then the succeeding analysis is based on the residual. As there seems little difference between 
this method and the preceding, the Gabor wavelet appears to be the optimum. 
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-0.5  ■ 

Fig. 8.4. Representative frequency hopping signal. 

0D        125 r^r^ -fyv^ 

^M^JL -*'    25
<tf%- ■ »«■*■<' 

75  lllUJllOO 125 

C D 
Fig. 8.5. Individual frequency components of frequency hopping signal identified with Adaptive Gabor 

Functions (2 x envelope). 
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Adaptive Cabor wavelet Freojaency Hopping signal 
Adaptive Gabor wavelet Frequency Hopping signal 

Adaptive Gabor Vavelet rreqiiency Hopping Signal 

Fig. 8.6. Adaptive Gabor Representation of the frequency hopping signal with 6 x the bandwidth of the 
Gabor wavelet.. 
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Adaptive Gabor wavelet Frequency Hopping Signal 
adaptive Gabor wavelet rreqaency Mopping Signal 

100 125 150 175 0 23 SO 73 100 

B 
123 130 173 

Adaptive Gabor Wavelet Frequency Hopping signal 

Fig. 8.7. Same as in Fig. 8.6 but with 6 x the bandwidth of the Gabor wavelet. 

Fig. 8.8. Representative frequency hopping signal with a high frequency monocycle. 
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25 50 73 100 125 ISO 175 0 25 50 73 100 

A B 
Adaptive Gabor Havelet Frequency Hopping Signal + Pulse 

1» 150 175 

Fig. 8.9 Adaptive Gabor Representation of the frequency hopping signal with monocycle. Both the 
frequency and the pulse components of Fig. 8.8 can be identified. 
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Coabined Kigner-Ville nmction, Pulsef recpiop Xo l Combined Higner-Tille Function, PulseFretftop xo 1 

A B 

Combined Wigner-Ville Function, PulseTregKop, Wo 1 

Fig. 8.10 The combined Wigner-Ville of the AGR of the frequency hop signal with monocycle. It can be 
seen that the frequency components of the Fig. 8.8 signal can be identified, but not the pulse. 
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Cowbined Higner-Tille function, mls«Tre^top -     Hi* rrecji. Co*p. 
Cort>iacd Vigncr-TilOc function, PnlsCFrccftap -      xigjfa Txtqx.  i 

combined Kigaer-ville Function, PulseFretjtop -     High rrequ. c ornp. 

Fig. 8.11 The Combined Wigner-Ville representation of the Adaptive Gabor representation of the frequency 
hopping plus monocycle signal, using the high frequency components of the lauer. It is seen that the 

monocycle pulse can be detected. 

9.0   The Constant Q Gabor Wavelet 

The Adaptive Gabor Representation (AGR) and the Combined and Single Wiener-Ville 
Distribution of the AGR were calculated for frequency hopping signals, pulses and radar 
return signals The AGR requires finding the optimum wavelet center frequency, optimum 
dwell and optimum modulating envelope. The hypothesis under test was that whereas the 
AGR has been viewed as an optimization with respect to three variables: a, t0 and /, with 
ap setting the envelope size independently of the other two variables, use of a constant Q 
Gabor wavelet would permit an efficient optimization using only one variable - a - with 
the other signal parameters functions of that one variable. It is shown that the constant Q 
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Gabor wavelet with f0.t0 =Af.At = 1/2, is optimum and that only one variable is required 
for optimization. 

9.0.1 Adaptive Gabor Representation (AGR)8 

The adaptive signal expansion is defined: 

s(t) = ^Bphp(t), 
p 

with the coefficients defined by: 

BP=(s,hpy 

The aim is to find l%{t) which is most similar to s0(t), i.e., 

\Bp\2 = max\(sp(t)hp(t))\\      Step 1. 
P 

Residuals are defined by: 

sp+i(t) = sp(t)-Bphp(t).        Step 2. 

If the functions, h (t), have unit energy: 

IMof=i, 
then the residual energy is: 

4w€ HMf-Kf- 
Step 1 is repeated to find 1\ it) as a match to sx (f), then Step 2 is repeated and so on, as the 
residual signal converges to zero. It should be noted that, unlike the regular Gabor 
expansion, as well as wavelets, the set [hp(t)] will never be complete in L2, even if the 
residual converges to zero, because each set of adaptive elementary functions is unique to a 
particular signal. 

As 

8 Qian, S., Chen, D. & Chen, K., Signal approximation via data-adaptive normalized Gaussian functions 
and its applications for speech processing. Proc. ICASSP-92, San Francisco, CA March 23-26, 
1992, pp. 141-144. 

Qian, S. & Chen, D., Signal representation using adaptive normalized Gaussian functions. Signal 
Processing, 36, No 1,1-11, March, 1994. 

Mallat, S. & Zhang, Z., Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal 
Processing 41, 3397-3415,1993. 
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IMP = ±\Bp 
p=0 

and as 

^jjWVDhp(t,a>)dtdco = \\hp(t)( = 1, 

the Adaptive Spectrogram (AS) can be defined as: 

AS(t,co) = yZ\Bp\2WVDhp(t,0)), 
p 

where it should be noted that the summation is over rows. 

A- -:u ™e ^Sin0t 0Ifedoes not contain ±e CToss-term interference of the Wiener-Ville distnbution, it also satisfies the energy relation: ^ 

IKOf = ^-jJAS(t,co)dtdco. 
2%- 

Gabor-iy^fu^tionf:V?j * °°mpletely arbitrai^- Foll°™ng convention', we choose the 

a„ 
vl/4 

w-l-f  exp HH'-'O2 expK']- 
where 

so that: 

-^ «"£* 
1 

A/.Ar = - 
2 

The Adaptive Gabor Representation (AGR) is then: 

*(0 = I W> = £3 «. \l/4 

„,-j    -p -f(f-Ole4v] 
An important property of the AGR is that, unlike the Gabor expansion, for which the 
analysis and synthesis functions are not identical, the AGR has the same analysis and 
synthesis functions. The adaptive coefficients, B   are computed as follows- 

' Qian, S. & Chen, D., Joint Time-Frequency Analysis, Prentice-Hall, New York, 1996. 
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Bp = \spmp{t)dt = ^J   J^(r)exp^(r-r0J
2]exp[-ro/]dr 

The AS can then be defined as: 

AS(t,a>) = 2£\Bp\2 exp -J ap[t -r,. )2 +—(co- <o0? f I 

where again it should be noted that this is the summation of the Wigner-Ville distribution 
over rows. 

9.0.2 Wigner-Ville of the AGR. 

The Wigner-Ville joint time-frequency density function of the adaptive Gabor 
functions is: 

WVDhp(t,w) = 2exp 
.       N2    (CO-ü)0)

2 

a. 

9.0.3 The Constant Q Gabor Wavelet. 

In previous expositions of the AGR, the four signal variables of center frequency 
f0, rmdpenod, t0, frequency bandwidth Af and time bandwidth, At, are separately defined' 
For example, 

*-m 
*-li 'o 

\a-j 

with 

f0 = mid Af, 

t0 = mid At. 

Obviously, this does not provide a constant Q wavelet. 

However, a constant Q Gabor wavelet is achieved from the following definitions10: 

10 Ban-ett, T.W., Structural information theory. /. Acoust. Soc. Am., 54, 1092-1098,1973. 

47 



The constant Q Gabor wavelet thus conforms to the following condition: 

f0.t0=Af.At = -, 

and the more general condition is11: 

f0.t0 = A/.Ar = -(2» + l)   n = 0,1,2,. 

9.1 Numerical Tests. 

The hypothesis under test was that whereas the AGR has been viewed as an 

S£T?°5Wi*f SPlCt t0 *** VaSableS: "*to mdf°> ^ ap *«*« Ae envelope size independently of the other two variables, use of a constant Q Gabor wavelet would permit 
an efficient optimization using only one variable - ap - with the other signal parameters 
functions of that one variable. v 

Using the frequency hopping signal plus a pulse shown in Fig. 9.1, a non-constant 
Q analysis was calculated with 4/0 s and 1 original signal plus 4 residuals - Fig 9 2 Tte 
Combined Wigner-Vüle distribution picks out the frequency components of die signal - 

11 Barrett, T.W., On vibrating strings and information theory. /. Sound & Vibration, 20,407-412, 1972a 
 _, Conservation of information. Acustica, 27, 44-47, 1972b. 

 „f TTie definition precedence of signal parameters: sequential versus simultaneous information 
Acustica, 27,90-93, 1972c. 

 Vfa^tim^lTfXl*™ °f tW°inf0rmati0n the0ries " a replyt0 some criticisms. /. Sound & 

 , Analytical information theory. Acustica, 29,65-67,1973. 
., Nonlinear analysis and structural information theory': a comparison of mathematical and 

physical derivations. Acustica, 33,149-165,1975. 
 , On linearizing nonlinear systems. J. Sound & Vibration, 39,265-268,1975. 

261, 1975 
, Lmeanty in secular systems: four parameter superposition. J. Sound & Vibration, 41,259- 

_, Information measurement I. On Maximum entropy conditions applied to elementary 
signals. Acustica, 35, 80-85, 1975. 

., Information measurement II. On minimum conditions of energy order applied to 
elementary signals. Acustica, 36,282-286,1975. 
 , Structural information theory of sound. Acustica, 36,271-281,1976. 
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Fig. 9.3; and the individual Wigner-Ville distributions pick out the individual signal 
frequency components - Fig.s 9.4-9.7. 

Calculating the AGR of the frequency components of the signal but with increasing 
modulating envelope, Fig. 9.8, revealed that the constant Q Gabor wavelet provided more 
detail than did longer envelopes and did not overlap the temporal length of the frequency 
components in the signal. This result established that a constant Q Gabor wavelets are 
optimum filters. 

Using high frequency Gabor wavelets, the pulse was extracted from the signal 
shown in Fig. 9.1 - Fig. 9.9; and using the Combined Wigner-Ville distribution 
represented in Fig. 9.10. 

Similar calculations were then performed on the representative radar return signal - 
Fig. 9.11. The AGR was calculated - Fig. 9.12 - and the Combined Wigner-Ville 
distribution is shown in Figs. 9.13(1) and 9.13(11) at two levels of magnification. Fig. 9.14 
shows the Combined WV for the high frequency components of the signal and Figs. 9.15 - 
9.18 show the WV for decreasing frequency components of the signal. 

Fig. 9.1. Frequency Hopping Signal with Pulse. 
ix« Adjptave Gabor Wavelet, Frequency Xqpcong Signal + Pali 

Hü ! Ill IllllHi 
IHHHI r I 1 11111 

ililiiü? S^Sl I 

* x i Adaptive Gabor wavelet, frequency Hopping signal * Pulse 

100     12 0      «      50     75     100     125     150     175 
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t x 4 Adaptive cabor Kavelet, frequency Hopping Signal 4 Pulse 

Fig. 9.2. Adaptive Gabor-Wavelet Transform of frequency hopping signal with pulse signal of Fig. 9.1. 4 
f0 s were used and 1 original signal plus 4 residuals. 
Ccmibinod Wigiter-vill« runetioa,  t x C Adaptiv« Gabor vavalat.  Frequency 

KpEping siffial + Pulse Cntutiwl vigMT-vill* Function,  SK ldiptiv» cabor w*v«l*t, Frecnm« 
Happing signal ♦ »vise 

0 25 50 75 100 125 150 175 C 23 30 75 1O0 123 ISO 173 

A B 
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combined wigner-ville Function, s x s idaptive Gabor lfavelet. Frequency 
Hagpmg Signal + Pulse 

Fig. 9.3. Combined Wigner-Ville Distribution Transform of the 4 x 4 Adaptive Gabor-Wavelet Transform 
of Fig. 9.2. 

#1 Higrter-ville Junction,   1x4 Adaptive Gabor K«v«let, rreouener 
Mopping signal + Pulse *1 Viguar-vm* Function, 4 x t Adaptiv« Uabor Hivelot, Fraoiertey 

Xoppia? signal * »also 
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#1 Higner-ville Fnnctioa, t x i Adaptive G»bor mvelet. Frequency 
Mopping Signal + Pulse 

Fig. 9.4. Single Wigner-Ville Distribution Transform of the 1st part of the 4 x 4 Adaptive Gabor-Wavelet 
Transform of Fig. 9.2. 

#2 Vigncr-Ville Funotioo,     I x  l Adaptive Cabor Kavelct,  rre^peacjy 
Kcppiag signal ♦ pulse #2 Hi^iur-rUlt runcUoQ,     l x I Adaptive G*bor **v«l«t, rc«eu«ncj 

Hqppiag Signal ♦ Pulse 

25 50 75 100 125 150 175 
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#2 Higner-ville Function,    3x9 Adaptive Gabor wavelet, Freguency 
Hopping signal + Pulse 

Fig. 9.5. Single Wigner-Ville Distribution Transform of the 2nd part of the 4 x 4 Adaptive Gabor-Wavelet 
Transform of Fig. 9.2. 

#3 Wigncr-Ville Fraction,   * x  4 Adaptive Gabor Wavelet, Fregaeacy 
Hopping Signal + Puls« 

#3 Hlgner-Tillfi Function, t x t Adaptive e«bor H«v«let, rrepa«acy 
»topping *ign*l * Pulae 

130 173 

53 



#3 Kigaer-ville Function,    4 x i ldaptive Gabor Havelet, Frequency 
Hopping Signal * Pulse 

Fig. 9.6. Single Wigner-Ville Distribution Transform of the 3rd part of the 4 x 4 Adaptive Gabor-Wavelet 
Transform of Fig. 9.2. 

#4 Kigaer-vjOlc ruactioa,   4x4 Adaptive Gibor Kcvelet, rregutoc)' 
Happing sugaal + Pulse « Higher-Tin« ninctlott, \ x i AtUctlve Gabor Ntvtltt, rrcajtaacy 

Mopping slgul + Pulse 

0 25 50 75 100 125 150 175 
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*i Higner-Ville Function,    4x5 Idaptive Gabor Wavelet, Freguency 
Hopping Signal + Pulse 

Fig. 9.7. Single Wigner-Ville Distribution Transform of the 3rd part of the 4 x 4 Adaptive Gabor-Wavelet 
Transform of Fig. 9.2. 

5 Adaptive Gabor *wavelet(f = 1.25,  envelope 1-10,  Frequency Xeppi * * 5 *<**ptive Gabor Kavelet,£ . l.so, envelope I-IO, rrecpiency Hopping 
ignal + Pulse signal + pulse 

J0&AAA 

A B 
3x3 Adaptive Gabor wavelet,! = i.oo,  envelope i-io, rreguency Hopping     sxs Adaptive Gabor n*vel«t,i = o.?5, envelope l-io, rrequeue* Koroino- 

Signal + Pule« Signal + Pulse ^^ 

C D 
Fig. 9.8. Adaptive Gabor Wavelet Transform of parts of signal of Fig. 9.1, with increasing modulating 
envelope. 
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(HF) 15 x 1 Adaptive Gabor Kavtlet, rrc^enqr Hopping sigjul + raise 
CKTj uri Adaptive sibor Kavtlet, rr*jQ«acy Hopping slgtul 4 pull« 

0       25      50      75      100     125     150      175      0       35      50      75      100     ISS     ISO     175 

A B 

(MT) 15H Adaptive Gabor Havelet, rreqaencr Keeping Signal + Pulse 

Fig. 9.9. Adaptive Gabor Wavelet transform using high frequency components of the signal of Fig. 9.1. 
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Confined Ki^er-TillA nmotion, 13 x 4 Adaptive G*bor Hmrelet, rreqiieaor 
(topping Sinti + Pals« 

Cenjbiaed viflnec-viUe Tuactioa,  I3xi id«piive a«bor Vcvelet, I reamer 
Hopping SJigtul ♦ Pnl« 

Combined Wigner-ville Function,  13 K t Adaptive Gabor Wavelet, Frequency 
Hopping signal + Pulse «"*■=■** 

Fig. 9.10. Combined WIgner-Vüle transform of the high frequency components of the frequency hopping 
signal plus pulse of Fig. 9.1. vv B 

Tgt:l,Sig:#0001,Az:-:24.9899997,»1:13.8099999» 

2S     50     75     100    125    150    175 

Fig. 9.11. Representative radar return signal. 
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Wav«l*t T"Jt:l,Sl^*OO01,li:-3*.S»MSB7,A2:lJ.«09fl6M4 

»00 1J5 150 ITS 

B 

5 * 5 adaptive Gator wavelet Tgt:i,sig:»oooi,iz:-2*.9899997,il:i3.80999 

Fig. 9.12. Adaptive Gabor-Wavelet Transform of representative signal of Fig. 9.11. 5 f0 s were used and 1 
original signal plus 4 residuals. 
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Combined Wigner-Tille rtmctioo,  5x5 Adaptive Sabor Wavelet »gt:l,3ig: 
#0001,AZ:-2«.9099997,Al:l3.«099999« 

Cpabined. Kigaer-Tille mactioc, S x 5 Adaptive Sabcx Wavelet Tgt:l,Sa.g: 
«0001 ,k.2:-a«.9899997,Al:13.00999994 

150     175 

jgl? OO   ■ 
<3> 

HRru. * 1fl**t i: 

«fc(§>£>- oo 

«       50       75 100      125      130      ITS 

(DA. d)B. 

combined Higaer-ville Function, 5xs Adaptive Gabor Havelet Tgt:i,sig: 
#0001,*x:-24.9*99997,Al:13.80999994 

(DC. 

Fig. 9.13(1). Combined Wigner-Ville Distribution Transform of the 5 x 5 Adaptive Gabor-Wavelet 
Transform of Fig. 9.2. 
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CoÄoncd Kigncr-Till* mnetiou, 5 x 5 Adaptive cabor xavelet fctil.sim 
*0001,Aa:-2t.9«9B»9?,Al:l3.«0»9«S»l cc«fcin«d wi(K»r-¥iii« rmctioo, 3x5 Adiptiv« eabor Mtvtlct Tot:i ,iio; 

MO0),AZ:-2«. 9099997, il:13.80S99994 * V 

*&* • "«***H» 

/TT\ 1 ° " " " 10° >»' «° "5 (n)A. (n)B. 
combinad HxgB«r-ville Fraction, sxs idaptive Gabor Havelet Tgt:i,si<r 

#0001,ii:-2i.9899997,Al:l3.80999991 

(II)C. 

Fig. 9.13(11). Combined Wigner-Ville Distribution Transform of the 5 x 5 Adaptive Gabor-Wavelet 
Transform of Fig. 9.2. Same as Fig. 9.13(1) but x 5 magnification. 
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#s lfigo«r-Vill» rmietKm. s x 5 ItHptivo Mbor v»val«t Mt:l.tio:»00l 
lZi-2t.9899997,Jl2:13.0099999« 

*s Hiatcr-Tillc ruaotion, sis »diptivc Citor mirelet Igtil.tlmHMS, 

#5 Migner-Ville Function,  5 x s »dative Gabor Havelet Tgt:l,Sig:#oooi, 
Az:-2S.9899997,Al:l3.80999991 8 ' 

Fig. 9.14. Wigner-Ville Distribution Transfomi of the 5th level (highest frequency components) x 5 
Adaptive Gabor-Wavelet Transform of Fig. 9.2. 
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#4 vign«r-ville reaction,  5x5 AdftptjLve aabor v«velet Tgt:l ,sig:#oooi, 
A2:-2«.9899997,Al:i3.80999994 

— »l;n.r-vlllt rancuiii. 5x5 KUgtlv« ubor »«v.l.t Tgtsl.siginoo 
*t!-24.9S999B7,kl:13.80999994 

25 50 75 100 125 150 175 

#4 Kigner-Ville runctioa,  5x5 Adaptive Gabor Kavelet Tgt:l,sig:#0001 
&z: -2». 9899997,Al:l 3'. 80939991 

Fig. 9.15. Wigner-Ville Distribution Transform of the 4th level (next to highest frequency) x 5 Adaptive 
Gabor-Wavelet Transform of Fig. 9.12. 
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#s xigner-ViU* ruiictioa, S x 3 Adtptive Gabor wtvelet Tgt:i ,si«#oooi, 
Az:-2%.9899997,M:13.8099999» 

#3 iri^i«r-ViU* Junction, 5 x 5 Adaptiv« Gabor **val«t Tgt:l, llmwooi 
*2J-2*.98»S997,JLl:lS.809SS99* 

25 50 75 100 ISS ISO 175 

:©»-)> O   »    OO 
/o) o      CH) 

It. «tw*i 

25 50 ?5 IO0 125 150 175 

B 
#3 Kigner-ville Function,  s x 5 Adaptive Gabor wavelet Tatti ,sig:#0001 

AZi-21.9*99997,11:13.«099999a 

Fig. 9.16. Wigner-Ville Distribution Transform of the 3rd level (middle frequencies) x 5 Adaptive Gabor- 
Wavelet Transform of Fig. 9.12. 
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AI.   Z1.S899997.AJ..13.80999991 Ai;-2l . MM997 ,*1: 1 3 .I0M99M AZ:-2«.S«99997,Al:13.8099999t SAbor K«v«l*t Tgt:t,Si9:#oooi, 

20 

"r^^^^^^W 

1 

5 

25      50      75      100     125     ISO     175 

I    IT 
as so 75 loo las iso 175 

B 
#2 Higaer-ville Function, s x 5 Adaptive Gabor wavelet Tgt:i,sig:#oooi, 

Az:-24.9699937,Al:13.80999994 

Fig. 9.17. Wigner-Ville Distribution Transform of the 2nd level (next to lowest frequency) x 5 Adaptive 
Gabor-Wavelet Transform of Fig. 9.12. 
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#1 Kigner-Tüle runctiem, 5xS Adoptive Gabor Kavelet Tgtu,sig:#oooi, 
lz:-2t.9499997,&1:13.0099999« 

*1 Wigner-Tilla Function,  5x5 Adaptive Cabor Mav&lat Tgt:l,Bxg:#000l, 
lz:-2l.9899997,A1:13.SC999994 

25 50 75 100 1S5 150 175 
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Fig. 9.18. Wigner-Ville Distribution Transform of the 1st level (lowest frequency components) x 5 
Adaptive Gabor-Wavelet Transform of Fig. 9.12. 
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10.0 Extension of the Gabor Transform (CQOW) 

We initiated investigations of wavelets based on orthogonal parabolic cylinder or 
Weber functions of increasing level described by the expansions: Af.At =f0.t0 = 1/2 (2n + 
1), n = 0,1,2,    (i.e., Constant Q Orthogonal Weber Function Wavelets (CQOWs)) 
Using a frequency hopping and pulse test signals, these wavelets are able to detect both 
resonance and pulse scattering features. Using scattergram plots between three levels of 
wavelets and two scale dilations, unique features of both the test signal and radar return 
signals can be demonstrated. This research is unique in two respects: using orthogonal 
wavelets of different levels and in the scatterogram cross-comparison of three levels of 
analysis, which can provide unique signatures for targets. In the case of the test signal of a 
frequency hopping signal, plus a pulse, it is seen that discernible cyclic patterns occur 
which may be correlated with the number of frequencies in the signal - four. In the case of 
the radar return test signal, it is seen that recognizable helical patterns occur, which may 
provide a unique signature for targets. 

In previous expositions of the Gabor transform, the four signal variables of center 
frequency, f0, midperiod, t0, frequency bandwidth Af and time bandwidth, At are 
separately defined. For example, 

with 

/0 = mid Af, 

t0 = mid At. 

Obviously, this does not provide a constant Q wavelet. 

However, a constant Q Gabor wavelet is achieved from the following definitions1: 

*o = '32 a 

*-m- 
The constant Q Gabor wavelet thus conforms to the following condition: 

1 Barrett, T.W., Structural information theory. /. Acoust. Soc. Am., 54, 1092-1098, 1973. 
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/0.r0 = A/.Ar = -, 

A more general condition has been derived2: 

/0.r0 = A/.Ar = ^(2n + l)   n = 0,1,2,  

which provides a range of orthogonal wavelets. 
Specifically, these wavelets are based on modulations which are Weber's functions. 

Weber's equation is: 

where £ is a dimensionless independent variable and A, is a dimensionless eigenvalue. The 
solutions to Weber's equation are the parabolic cylinder or Weber-Hermite functions: 

Dn(t) = 2-nl2Hn 

where 

V2 
exp 

-t2 

^dexpf-r2] 

are Hermite polynomials satisfying: 

Hn{t) = (-!)• exp[r2]-    ^ 

d2x   „ dx   n 
-It—_2nx = 0 

dt2        dt 
and the orthogonality relationship: 

2 Barrett, T.W., On vibrating strings and information theory. /. Sound & Vibration, 20,407-412,1972a. 
 , Conservation of information. Acustica, 27,44-47,1972b. 
 , The definition precedence of signal parameters: sequential versus simultaneous information 

Acustica, 27, 90-93, 1972c. 
_, The conceptual basis of two information theories - a reply to some criticisms. J. Sound & 

Vibration, 25,638-642,1972d. 
 , Analytical information theory. Acustica, 29,65-67,1973. 

., Nonlinear analysis and structural information theory: a comparison of mathematical and 
physical derivations. Acustica, 33,149-165,1975. 
 , On linearizing nonlinear systems. /. Sound & Vibration, 39,265-268,1975. 

_, Linearity in secular systems: four parameter superposition. /. Sound & Vibration, 41, 259- 
261, 1975. 

_, Information measurement I. On Maximum entropy conditions applied to elementary 
signals. Acustica, 35, 80-85,1975. 

_, Information measurement II. On minimum conditions of energy order applied to 
elementary signals. Acustica, 36,282-286,1975. 
 , Structural information theory of sound. Acustica, 36,271-281,1976. 
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■f-oo 

JHm(t)Hn(t)exp[-t2]dt = 0 formen. 

The Weber functions, O'th to 6th order, are: 

Weber Functions - see Fig. 10.1. 

ORDER (LEVEL) 

O'th order, n=0 

1st order, n=\ 

2nd order, n=2 

3rd order, n=3 

4th order, n=A 

5th order, n=5 

6th order, n=6 

2-"l2H„ 
( t \ 

vV2y 
exp 

T'H\T2 
exp 

-r 

-f 

2-2/2//, 
.V2j 

exp 

2-"^3(^)exp 

-r 

-f 

■t-4/2 ww I      * 2-tfJ^exp -f 

2-//5-exp 

2-"/fJ -U 
V2. 

exp 

-f 

-f 

The Weber function wavelets, O'th to 6th order, are: 
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Constant Q Weber Function Wavelets, see Fig. 10.2 

ORDER (LEVEL) 

O'th order, n=0 

^'2H(£ exp \-t
2' 

4 
exp[j(4/l)r] 

1st order, n=\ Tin"(^h ~-r2l 
4 

exp[z(4/3)f] 

2nd order, n=2 Tlll"{kh ~-t2~ 

4 
exp[i(4/5)f] 

3rd order, n=3 r,ll"(-k) exp 
~-r2~ 

4 
exp[i(4/7)?] 

4th order, n=A ^"(i) exp 
"-?2" 

4 
exp[f(4/9)f] 

5th order, n =5 
2~inH5 (i)eXP ~-r2~ 

4 
exp[i(4/ll)r] 

6th order, n=6 
2-*l2H6 

fe)eXP 

"-f2l 
4 

exp[/(4/ll)r] 

At the O'th order, i.e., n = 0, the Weber-Hermite function is the well-known 
Gaussian and the Weber Function wavelet of the O'th order is a unique Gabor function - a 
constant Q Gabor function - due to the two uncertainty restrictions described above. This 
O'th order wavelet is: 

a1/4 

sit) = -fe-exp -f('-'o) 
1 

or, with a= — p    a 

exp[z8(r-r0)];   ^(/)= C^exp[-(2/«p)(/-/0)
2]exp[-l-(/-/0)/8 

1(2a 
lf*-«n 
2V   a 

exp irf^ (/) = J2exP[-2W/-/o))jexp[-w(/-/0)/8] 

All of the Constant Q Orthogonal Weber Function Wavelets, which include the 
above as the O'th order wavelet are: 

2-/2« 
fff"foll ff~'°Tl I   a   ) exp l   a   ) exp 

V2 4 

V           J 

i(4/(2(« + l)))|^-4> 
a 

,   « = 0,1,2,3,. 
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Integration showed that these continuous wavelets are reasonably well compactly 
supported. 

10.1  Applications 

Fig. 10.3 shows the test signals. The first is a frequency hopping signal with a 
pulse; the second is a representative radar return. Fig.s 10.4 and 10.5 show the application 
of the Constant Q Orthogonal Weber Function Wavelets (CQOW) to the two test signals for 
the O'th order through the 6th order and at two scale dilations. It can be seen that CQOWs 
provide excellent detection of both signal frequencies and pulse scattering. 

A new form of analysis was tried using the results of the normalized CQOW 
coefficients. Scatterograms were calculated (Fig.s 10.6 and 10.7) for the two test signals 
by parametrically plotting the coefficients for the O'th order, 1st dilation or 01, the 1st 
order, 1st dilation or 11, and the 2nd order, 1st dilation or 21, i.e., 01,11,21, then the O'th 
order, 2nd dilation or 02, the 1st order, 2nd dilation, or 12, and the 2nd order, 2nd 
dilation, or 22, i.e., 02,12,22. These parametric plots were carried out among the orders 
O'th through 6th and for 2 scale dilations. 

In the case of the frequency hopping signal, plus a pulse, Fig. 10.6, it can be seen 
that discernible cyclic patterns occur which may be correlated with the number of 
frequencies in the signal - four. In the case of the radar return test signal, Fig. 10.7, it can 
be seen that recognizable helical patterns occur, which may provide a unique signature for 
targets. 
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Fig. 10.1. Weber functions, O'th to 6'th order. 
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3rd Order 

6th Order 
Fig. 10.2. Wavelets based on Weber functions, O'th to 6'th order. 

?gt:l,Sig:#0001,Az:-24.9899997,11:13.6099999« 

0.2 ■ 

Fig. 10.3. A. Frequency Hopping plus Pulse Test Signal. B. Radar Return Test Signal. 
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Fig. 10.4. Test Signal: Frequency Hopping with Pulse. Weber function wavelet analysis, 0th to 6th Order, 
Dilation Filters 1 and 2. 
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Fig. 10.5. Test Signal: Radar Signal Return. Weber function wavelet analysis, 0th to 6th Order, Filters 1 
and 2. 
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Fig. 10.6. Parametric plots of 0th Order, 1st Order, 2nd Order, 1st Filters (01,11,21), 2nd Filters 
(02,12,22), etc. ...(42,52,62) for the Test Signal, Frequency Hopping plus Pulse. 
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Fig. 10.7. Parametric plots of 0th Order, 1st Order, 2nd Order, 1st Filters (01,11,21), 2nd Filters 
(02,12,22), etc. ...(42,52,62) for the Test SignalJRadar Return Signal. 

10.2 Paraunitary Properties 

Using a frequency hopping and pulse test signals, CQOWs wavelets are able to 
detect both resonance and pulse scattering features. The characteristics of these wavelets are 
based on IIF filter principles. It is customary to believe that a discrete time scaling (low 
pass) wavelet is first necessary to obtain the discrete time (high pass) wavelet. Here we 
show that the expansion method permits an estimate of the continuous time high pass 
wavelet from the summed Fourier spectra of the expansions, n = 1, 2,... °°. Future work 
will examine whether repeated analysis of the original signal by higher order wavelets is 
equivalent to the customary method of using but one scaling function and one wavelet with 
signal decimation. 
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Paraunitary properties underlie not only the perfect reconstruction capabilities of 
certain wavelets but the relation of the low pass (scaling) and high pass (wavelet) filters. 
These properties are defined as follows3. Some definitions are necessary, which are: 

IfH(z) is the z-transform of h(n), then 

ff(z)= !>(»)*- 

If z = exp[* co], then H(z) is the Fourier transform of h(n). 

H(z) = [H(z)]\ 

that is, H(z) is the paraconjugate of H(z). 

H*(x) is the complex conjugate of H(x) and H.(x) indicates that only the 
coefficients are conjugated. 

Hf(x) denotes the transpose-conjugate ofH(x). 

Using the above, if H(z)H(z) = dl, for some d>0 and for all z, 

then the filter has the paraunitary property. Furthermore, if E(z) is a filter analysis bank, 
and R(z) is a filter synthesis bank, then the perfect reconstruction property is expressed by: 

R{z) = cz~KE{z). 

Under the paraunitary condition, the analysis filters are then related as: 

ÄL<») = -C(-1)"^(L-«), 

from which relation has arisen the customary observation that the discrete time high pass 
filter must be obtained from the discrete time low pass filter and that knowing the 
continuous time low pass filter does not permit the definition of the high pass filter - 
continuous or discrete time. 

10.3  Applications 

Here we obtain the high pass filter in another way. The Fourier transforms of a 
number of Weber functions are shown in Fig. 10.3.1. With the n = 0 function as the 
scaling wavelet (the first shown in Fig. 10.3.1) then the higher order functions can be 
viewed as approximations to the high pass wavelet. Thus the high pass wavelet can be 
obtained by the inverse transform of the summation of the Fourier spectra of the series 
above n = 0. Fig. 10.3.2A shows that summation for the small number of the series shown 
in Fig. 10.3.1. Fig. 10.3.2B. shows the limiting extrapolation. 

3 Cf. Vaidyanathan, P.P. Multirate Systems and Filter Banks, Prentice Hall, 1993; 
Vetterli, M. & Kovacevic, Wavelets and Subband Coding, Prentice Hall, 1995. 
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The inverse transform of Fig. 10.3.2B provides the high pass wavelet which is 
shown in Fig. 3B (with the scaling function shown in Fig. 10.3.3A for cross comparison). 
The low pass scaling function and the high pass wavelet were then used to analyze the 
frequency hopping signal plus pulse shown in Fig. 10.3.4. Figs 10.3.5 and 10.3.6 
provides the results. It can be seen that the low pass and high pass features are adequately 
displayed. It is straightforward to use this scaling function and this wavelet in a multiscale 
analysis, utilizing the customary decimation procedures. 

Alternatively, the signal can be analyzed, without decimation, by utilizing the 
Weber functions wavelet series, n = 0,1,2, 3, 4, 5, 6, in a Gram-Schmidt-like expansion. 
Future work will examine the advantages of this approach. 

Fig. 10.3.1. Fourier transforms of Weber functions (elementary signals) for n = 0,1,2,3,4,5 and 6. 

100 

A. 
^ I t  \- 
100 

B. 
Fig. 10.3.2. A. The additive Fourier transforms of the Weber functions for n = 1, 2, 3, 4, 5 and 6. B: The 
projected additive Fourier transform of the Weber functions for n = l...-*». 
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A. B. 
Fig. 10.3.3. A: The scaling (low pass) Weber function. B: the (high pass) wavelet from the inverse Fourier 
transform of the Fourier spectra of Fig. 2B. 

Fig. 10.3.4. Representative frequency hopping signal plus pulse. 
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Fig. 10.3.5. Wavelet transform of the frequency hopping signal plus pulse shown in Fig. 4, using the low 
pass Weber function wavelet shown in Fig. 10.3.3A. A(l)-B(l)-C(l), A(2>B(2)-C(2), A(3)-B(3)-C(3), show 
the real part, the phase and modulus of the wavelet transform. 
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Fig. 10.3.6. Wavelet transform of the frequency hopping signal plus pulse shown in Fig. 10.3.4, using the 
high pass Weber function wavelet shown in Fig. 10.3.3B. A(l)-B(l)-C(l), A(2)-B(2)-C(2), A(3>B(3)-C(3), 
show the real part, the phase and modulus of the wavelet transform. 
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11.0 Instantaneous Phase 

This section addresses instantaneous phase information obtainable from application 
of wavelet analysis. We show that a detailed thumbprint of a complex (target return) signal 
can be obtained which can be used as data supporting a detailed wavelet modulus 
description of the same signal. We also show a result from calculating the differential phase 
which also provides supporting data. It is also shown that there are optimum dilations for 
providing correlated measures. 

We also calculated the probability distribution function for the target return signal 
processed with a specific dilation of the wavelet and the mutual information for two 
dilations. This form of analysis also provides supporting data to the modulus thumbprint of 
the signal. 

In summary, the phase information and mutual information provide excellent 
supporting data to that providing by the wavelet modulus. In combination a more detailed 
analysis of target information is possible. 

1. Instantaneous Phase 

The Weber functions are defined as extensions of the Gabor transform with the four 
signal variables of center frequency, f0, midperiod, t0, frequency bandwidth Af and time 
bandwidth, At, are separately defined. For example, 

with 

/o = mid A/, 

t0 = mid At. 

Obviously, this does not provide a constant Q wavelet. 

However, a constant Q Gabor wavelet is achieved from the following definitions1: 

1 Barrett, T.W., Structural information theory. /. Acoust. Soc. Am., 54, 1092-1098, 1973. 
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The constant Q Gabor wavelet thus conforms to the following condition: 

f0.t0 = Af.At = -, 

A more general condition has been derived2: 

f0.t0 = Af.At = -(2« + l)   n = 0,1,2,  

which provides a range of orthogonal wavelets. 
Specifically, these wavelets are based on modulations which are Weber's functions 

Weber's equation is: 

where % is a dimensionless independent variable and X is a dimensionless eigenvalue. The 
solutions to Weber's equation are the parabolic cylinder or Weber-Hermite functions: 

Dtt(t) = 2-n/2Hn
f ' 

V2 
exp 

-t2 

where 

».«- nrexpH^l 
dtn 

are Hermite polynomials satisfying: 

d2x    ^ dx   ^ 
—T~2t—_2nx = 0 
dt2        dt 

2 Barrett, T.W., On vibrating strings and information theory. /. Sound & Vibration, 20,407-412, 1972a. 
 , Conservation of information. Acustica, 27,44-47,1972b. 
 . The definition precedence of signal parameters: sequential versus simultaneous information 

Acustica, 27,90-93,1972c. 
_, The conceptual basis of two information theories - a reply to some criticisms. J. Sound & 

Vibration, 25,638-642,1972d. 
_, Analytical information theory. Acustica, 29,65-67,1973. 
., Nonlinear analysis and structural information theory: a comparison of mathematical and 

physical derivations. Acustica, 33,149-165,1975. 
 , On linearizing nonlinear systems. /. Sound & Vibration, 39,265-268,1975. 

, Linearity in secular systems: four parameter superposition. /. Sound & Vibration, 41,259- 
261, 1975. 

_, Information measurement I. On Maximum entropy conditions applied to elementary 
signals. Acustica, 35, 80-85, 1975. 

, Information measurement II. On minimum conditions of energy order applied to 
elementary signals. Acustica, 36,282-286,1975. 
 . Structural information theory of sound. Acustica, 36,271-281,1976, 
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and the orthogonality relationship: 

JHm(t)Htt(t)exv[-t2}dt = 0 formen. 

The following analysis is based on the O'th order in = 0) wavelet: 

Y(t) = 2^'2H/ * V2JeXP 
4 

The signal analyzed is the frequency hopping plus pulse signal shown in Fig. 1. 

The wavelet can be viewed as an analytic signal: 

\j/(t) = s(t) + is(t), 

where s(t) is the Hubert transform of s(t): 

%       J t-x 

P.V. indicates that the integral is taken in the sense of the Cauchy principal value. The 
instantaneous phase is then defined as: 

0(r) = arctan——. 
s(t) 

The differential of instantaneous phase is represented by means of obtaining die 
difference in phase between the phases obtained from applying the Gabor wavelet at 
different dilations. 

11.1 Mutual Information. 

If the phases of the wavelet filtered signal are considered as n discrete random 
variables, Xir...,Xn, with sets of values, S,,...Sn, the probability distribution for an 
individual phase for a particular time in the signal and using a particular dilation of a Gabor 
wavelet, Xt, is: 

p(xt) = Pr[X,. = *,], xt € S... 

The joint probability distribution can then be defined for n variables X, X as 
P(x1,...,xj. ' "•"   » 

The mutual information, I(Xj,X2), is defined as: 

I(Xx;..-Xn)= X- I>(*i.~.*,.)log ^r'f'V 
«,63,   *„eH„ P(*i )-/>(*„) 
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11.2  Applications 

Fig. 11.2 shows the instantaneous phase information from application of the Oth 
order Gabor wavelet to the signal of Fig. 11.1. It can be seen that a detailed thumbprint of 
the frequency hopping plus impulse signal can be obtained which could be used as data 
supporting a detailed wavelet modulus description of the signal. Fig. 11.3 shows the 
differential phase result which also provides supporting data. Fig. 11.4 is a more detailed 
single cut analysis of Fig. 11.3 and shows the fine structure correspondence to the 
frequency components of the signal. 

Fig. 11.5 provides 3-dimensional cross-phase plots of the data of Fig. 11.2 and 
reveals the fine structural changes in phase at increasing dilations of the wavelet. Fig. 11.6 
also provides the same information for the differential phase measurements of Fig. 11.3. 
Fig.s 11.7 and 11.8 are phase-phase plots for different dilations of the wavelet for the 
instantaneous and differential phase measurements. It can be seen that there are optimum 
dilations for providing correlated measures. 

Fig. 11.9 shows examples of a probability distribution function for the signal 
processed with a specific dilation of the wavelet and the mutual information for two 
dilations; and Fig. 11.10 shows the mutual information from application of the 0th order 
Gabor wavelet at a number of dilations. This form of analysis also provides supporting 
data to the modulus thumbprint of the signal. 

In summary, the phase information and mutual information provide excellent 
supporting data to that providing by the wavelet modulus. In combination a more detailed 
analysis of target information is possible. 

1(1111111111 

-2 

Fig. 11.1. Frequency Hopping plus Pulse representative signal. 
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Fig. 11.2. Instantaneous phase measurements of the signal of Fig. 1 using the Oth order Gabor wavelet 
function. 
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Fig. 11.3. Differential phase measurements of the signal of Fig. 11.1 using the 0th order Gabor wavelet 
function. 
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Ptiase(l)  - Phase(2) Phase(2)   - Phase(3) 

Fig. 11.4. Differential phase measurements: cuts through the 3-dimensional representation of Fig. 11.3. 
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Phase for 3,4,5 
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Phase for 6,7,8 
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Phase for 8,9,10 

Fig. 11.5.3-dimensional representations of the instantaneous phase for 3 0-order Gabor filters, from 1-10. 

Differential Phase for 1,2,3 
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Differential Phase for 2,3,4 

Differential Phase for 4,5,6 
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2     ^r 2 

Differential Phase for 7,8,9 

Fig. 11.6. 3-dimensional representations of the differential instantaneous phase for 3 0-order Gabor filters, 
from 1-9. 
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Fig. 11.7. Plots of instantaneous phases obtained from O'th Gabor wavelet sampling. 
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Fig. 11.8. Plots of differential instantaneous phases obtained from O'th Gabor wavelet sampling. 
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pdf2 
Mutual Information- pdf(1)-pdf(2) 

obtamedfromthelstand2nd^^^ **"* actions 

Fig. 11.10. The mutual information obtained from the Oth order Gabor 
Fig. 11.1. 

wavelet transform for the signal of 
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12.0 Fractals and Fano Factors 

This section addresses the differentiation of two target return sisnak ,,«na m 
wavelet processing and (2) fractal analysis of the results of th£IS an£ WT ™ 

equation: 

ö(r) = 5rVf-g(r) 

>g(a)J 

where-B, b and a are constants and/W is a periodic function such that f(l+x) = fli) 
In its simpler form, this relationship is: /(     '   /W* 

Q(r) = Br* 

has a D^wer tffZ Sf Sf?!^ ** SCahn^ rel^onship for a statistical property Q(r) 

Pieces ÄÄS^Ät ?T ^ a nUmbCT °f 

W(r) = r~d. 

J±££&%Z% *•means ^ **value of"" P™^- a*»—«•««t-tai- 

Ä?ÄÄ''is *° ^ K to number'ww-of sm*les' «»**«- 
Q(r) = iiV(r). 

Therefore, by substitution: 

Q{r) = r.r-d = rl-d = rb, 

and 
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In general, 

and therefore: 

d = l + b. 

N(r) = r~\ 

Q(r) = rb, 

Q(r)«[N(r)]arß 

a 

where theoretical justification is needed for how Q(r) depends on N(r) and r Below we 
assume a = ß= 1. ' 

*nH itc A"°*F™easuJe of fractal behavior, the Fano factor, is equal to the variance/mean 
tari£d* 1S dePendent °n ±& Wind°W length °^r which *e vari^e SSS 

pe connection of fractal behavior and wavelets is due to wavelet coefficienK 
giving local information about differentiability and Holder continuity of auction 
Furthermore, an essential characteristic of the wavelet transfom°stiteSffitf to SahS a 
process relative to scale or resolution. Also, the wavelet transform^ bVconstSctio^tS 
a signal by successive refinements, commencing from a Sarse SSS^Sd 

cTsrÄ! CaCh SteP "** fmer detaÜS -  a prOCeSS i^ntical rXrof^ 
Therefore, we explored this relationship to determine whether this form of analv*k 

might provide a useful thumbprint of target return signals. y 

12.1  Applications 

Fig   l^fjT mSiSCS^UCted °i ^ re?reSentadve ^ ^ retu™ shown in rig.   i/.l(A, B)   The Gabor wavelet transforms of these signals   uDon whirh  tfe» 
subsequent analysis was performed, are shown in Fig. 12.2. Sffio^Kt 7amDhtude 
Tl^Z SCal?K,S S5°WnKf0r ^ Si^nals * Rg" !2-3- Cuts thr?ugh8Ä pÄg 124) show a stable distribution (as opposed to asymptotically Gaussian disStioS 
^S_~Sin ** case of one *»* and decXig in th'e caTof^etteS 

Using the log-log plots shown in Fig. 12.5, the fractional dimension Der time hin 

ffi£S5^^ **ongmal Slgnals of F*- m overlaid ** 
12 8  TW^J^i" mea?S f"*8 fflters ^ for ««* Ä» bin are shown in Fig 
iie s'igSlT CC m ** Pattems generated P^^S ** differentiation of 
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»gt:l<Sig:#0001,»z:-21.9899997,11:13.8099999» 
Tgt:l.Sig:#1162,lz:-22.5300006,Al:7.380000U» 

Fig. 12.1. A: Representative radar return signal #1; B. Representative radar return signal #2. 

*yt^i,si9!#ooo:,ii:-3i.fla9SMT,ja:ij.«oaft»s»4 

o as so 

Fig. 12.2. (Gabor) wavelet transforms of signal #1 (A) and signal #2 (B). 

loc-LOC »lot - Jgt;l.sig;«ooM,m-M.Ma»a»7,tlii3..oat>aat 
UX-IOQ »lot - igtii.«l»i«imjIi-M.aMMt,j1,t.M0Mtu 

Fig. 12.3. Log-Log plots of wavelet transforms shown in Fig. 2. 
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LOG-LOG Plot,   TiM »ins  10  - 19,  lo  Kcvelets LOG-LOG Plot,   Tim. »ia,  l0  . no  -  I9,   10 Viv.l.t« 

Fig. 12.4. Cuts through the log-log plots of Fig. 12.3 across transforms. 

tOQ-LOQ Hot.  T5t:l,aigt#oO01.i 

A- B. 
Fig. 12.5. Log-Log plots of wavelet transforms shown in Fig. 12.2 - 1st 10 transforms. 

Fractal DuMciEion,       Tgt:l ,sig:*oooi„ 

0.053 
Ax:-2t.SSflflOS7,Al:l3.tO09S9»4 IrtcUl 

Di*«»ic»,       *3tn,Si«:«LlS2,Jkz: 22.33O0OOC,kl:7.3»OO0011 

If 
23 30 73 1O0 123 130 173 20 «o co to 100 

A- B. 

Fig. 12.6. Fractal dimensional representation of the signals of Fig. 12.2. 
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rxaet*l BiMmiieu,      T«t:i ,Sigi#ooa] „ H:-a«.9«»»B7,ii!i3.eo»»m rractil DiSMosicos,     Tgt:i,sig:#i 
162,l2:-22.5300006,11:7.30000011 

> AAA 

Fig.12.7. Fractal dimensional representation of the signals of Fig. 12.2 with overlay of those 

rmo Kmflxsrs - ^t:l.sigzttitm,u:-ll.3a%S3il,i^:^.tmiM,t 

signals. 

*gt=l.Sig!«Ut2,ti:-22.5300008,^1.7 .38000011 

00 10O 

Fig. 12.8. Fano number representation of the signals of Fig. 12.2. 
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13.0 Group Theoretical Approaches 

,.„ V1}* s*0*0" addresses analyses in terms of (a) higher-order symmetries- (b) 
JfSSÄ ^d (5\groi? theoreSC' md fomulations in electromagnetic theory of 
SS ?M Iff fidd m (ac} A

nÄe^ COllective excitations in a 2-dimensional electron gas; 
and (b) sohtons in new SAW devices and heterostructures in general. The method of 
generation of modulated TeraHertz pulses utilizes a plasma mirror depended on the 
formation of sohton transmission. Therefore the following describes the commencement of 
an analysis of such sohton transmissions using the various approaches described. 

The equation of motion derived by Harmuth1: 

d2E d2E    . .dE 

incorporating s, the magnetic conductivity, was shown by Barrett^to be a two-dimensional 
Klein-Gordon equation m the sine-Gordon form, i.e., a soliton form. Soliton solutions 
require complete mtegrabihty and integrable systems conserve geometric features related to 
eSSf^J^J?? ^^o118 of motion for conventional Maxwell theory, which are 
solutions of U(l) symmetry systems, sohtons are solutions of SU(2) symmetry systems 
^Irion^0^^0^-571111^117, ** more fundamental than differential equation 
descriptions. Therefore this we develop some basic concepts in order to place differential 
equation descriptions within the context of group theory. UUICICIUMI 

Within this context, ordinary differential equations are viewed as vector fields on 
manifolds or configuration spaces. For example, Newton's equations are second order 
differential equations describing smooth curves on Riemannian manifolds. Noether's 
theorem states that a diffeomorphism, <j>, of a Riemannian manifold, C, induces a 
diffeomorphism, D<j>, of its tangent bundle, TC. If 0 is a symmetry of Newton's equations, 
then Dtp preserves the Lagrangian, i.e., 

L°D<j> = L. 

As opposed to equations of motion in conventional Maxwell theory, sohton flows 
are Hamiltoman flows. Such Hamiltonian functions define symplectic structures for which 

1 Harmuth HJ., Correction for Maxwell's equations for signals I. IEEE Trans. Electromagn Compat 
EMC-28,250-258, 1986a; v   ' 

 ^7^0
C~?~n f°r Maxwell's «nations for signals II. IEEE Trans. Electromagn. Compat., 

tML-28, 259-265, 1986a; 

2 Barrett, T.W., Comments on the Harmuth Ansatz: use of a magnetic current density in the calculation of 
the propagation velocity of signals by amended Maxwell theory. IEEE Trans Electromasn 
Compat., 30,419^20, 1988. S 

 _, Comments on 'Solutions of Maxwell's equations for general nonperiodic waves in lossy 
media'", IEEE Trans. Electromagn. Compat., 31,197-199,1989. 

., Comments on 'Some comments on Harmuth and his critics"'. IEEE Trans Electromasn 
Compat., 31, 201-202, 1989 

_, Electromagnetic phenomena not explained by Maxwell's equations, pp. 6-86 in A. 
Lakhtakia (Ed.) Essays on the Formal Aspects of Electromagnetic Theory, World Scientific, 1993. 
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«««in ^°r1er t0 rdate ±& ^ major soliton nations to group theory it is necessarv to 
examine the Lax equation or the zero-curvature condition (ZCC) The ZCC^ exoresseTthe 
fSs! W%meCh0n by ** comm^on relations of tile coving d^vativ^tS 

= 0, 

or 

k<&       J. ox 

vn^ü^^kik"? x?°^S that Ae §eneric cases of soliton - the Kortewee de Vries 
fencan?e Lt ^e- Schräger Equation (NLS), the Sine So? EquSn 
(bOb)   can be given an SU(2) formulation. In each case, below, V is a one-dinSsional 

space that is embedded in the space of off-diagonal complex matrices, f °   b) and in each 
[c   0) 

case A{u) = aX + u, where u is a potential, X is a complex parameter, and a is the 

which links these equation to an 0    i 
constant, diagonal, trace zero matrix a = 

SU(2) formulation. 

From inverse scattering theory, a function is needed, defined: 

B& = Lc»exrt-Kn& + — jb(k)cxV[ik£]dk,   where 

-2 --2 2 2 
-*q ,...,-x-iV are discrete eigenvalues of u, 

cx,...cN are normalizing consts, and 

b{k) are reflection coefficients. 

In the first case, if u(x) = 
0    q(x)\ 

-1     0 

B(u) = atf + uX2 + 

J 
and 

n      i    \     r 
2q    2q 

0    --q 
2  ) 

1 + 

,2\ 
*£. Zl 
4       2 
1 Zl 

\2       A J 

then ZCC is satisfied if and only if q satisfies the KdV in the form qt = --(6qqx +qxxx). 
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In the second case, if u(x) = f q   ^ 
\rq{x)     0 ) 

and 

5(«) = aA3+MA2 + 

l I   ,2 I 

then   ZCC   is   satisfied   if  and   only   if  q(x,t)   satisfies   the   NLS   in   the   form 

<7< = ^(<7~+2k|24 
/" 

In the third case, if u(x) = 
0 ?«w 

o 
and 

B(u) = — 
4A 

/ cos|>U)]     sin[^(x)] ^ 

sin[q(x)]   -cos[q(x)]f 

then ZCC is satisfied if and only if q satisfies the SGE in the form q, = sin|>] 

«niiton S\ fA ^f eqUati0n °f moti°n *** electric *"* magnetic conductivity is in sohton (SGE) form, the group symmetry for which is SU(2). Solitons define Hamütonian 
flows and their energy conservation is due to their symplectic structure. 

. T, Jhe following are rninimal topological and group theory definitions required to 
Mow the above-iniüated arguments. The groups used in Yang-Mills theory are continuous 
groups (as opposed to discrete groups). Unlike discrete groups, continuous groups contain 
an infinite number of elements and can be differentiable or analytic. 

U(n) Group Algebra 
Unitary matrices have a determinant equal to ±1. The elements are represented bv 

nxn unitary matrices. v y 

U(l) Group Algebra 
The one-dimensional unitary group, or U(l), is characterized by one continuous 

parameter. U(l) is also differentiable and the derivative is also an element of U(l) A wen- 
known example of a U(l) group is that of all the possible phases of a wave function which 
S2JÜS11 * C°°5^ia?r/,1f a ^^sional space. When interpreted in this way - as the 
internal phase of the U(l) group of electromagnetism - the U(l) group is merely a circle (0 

Möbius Group, M, Algebra 

itself Arfelememi ^' transformations "^P ±e extended complex plane one-to-one onto 

m : C -> C or 

,       az + b    ., 
m(z) = with 

cz + d 
ad-batO. 
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There is a homomorphism between M and GL(2,C). The mapping from GL(2,C) to M is: 

p:X 
fa   b\ 

c   d 
—» m(z) = 

az + b 

cz + d 

The determinant of A 
fa   b~\ 

c   d 
is /l2det 

fa   b 
, whence it is seen that (1)1 may be chaosen 

in two ways and that (2) the determinant can be qual to +1 - which gives the grout» 
SL(2,C). F 

Because of (1) it is seen that whereas SL(2,C) is simply connected, M is not. 
Therefore SL(2,C) is the universal covering group of M. If u and v are complex numbers 
and 

u' = au + bv 

v' = cu + dv 

and if z = ulv and w = u'lV, then 

and 

az + b       ,      ,    „ 
w =    a,b,c,deyi 

cz + d 

ad-bc = \. 

O(n) Group Algebra 
The orthogonal group, O(n), is the group of transformation (including inversion) in 

an «-dimensional Euclidean space. The elements of O(n) are represented by n x n real 
orthogonal matrices with n(n -1)/2 real parameters satisfying AA£ = 1. 

0(3) Group Algebra 
The orthogonal group,^), is the well-known and familiar group of 

transformations (including inversions) in 3-dimensional space with 3 parameters, those 
parameters being the rotation or Euler angles (a,ß,y). 0(3) leaves the distance squared, 
x2 + y2 + z2, invariant. 

SO(2) Group Algebra 
The collection of matrices in Euclidean 2-dimensional space (the plane) which are 

orthogonal and moreover for which the determinant is +1 is a subgroup of 0(2). SO(2) is 
the special orthogonal group in two variables. 

The rotations in the plane is represented by the SO(2) group: 

R(6) = 
'cos[0]   -sin[0]N 

> sin[0]    cos[0] 
0€% 

where 

R(6)R(Y) = R(e + Y). 
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SOV)%££ d,dC " ** C°mpleX Plane *** ^»^carion as the group operation is an 

SO(3) Group Algebra 
The collection of matrices in Euclidean 3-dimensional SDace which am r»rfh™™oi 

and moreover for which the determinant is +1 is a subg^o^^^ £?2Sd 
orthogonal group in three variables and defines rotation! in 3-dimensional spai      ^ 

Rotation of the Riemann sphere is a rotation in ft3 or $ - 77 - £ space, for which 

2* 2y £ = 
I   |2      1 

• _ lZl   ~ 1 
N2+r "  tf+i' C"|zrTT' 

z = x + iy = 

^(a) = V2 
1 fl   -lYeta/2 

*W) = 

vi   iy 

1 ri -^ 
V2 -1     1 

0 

eiß/2 

0 

0 
-ia/2 

0 

V2I-I      1 
''cos a/2   zsina/2^) 
^'sina/2   cosa/2, 

1/1   i'Wcosj8/2   -sin 0/2^ 
!V2U   1 sin 

V2 0   1 0    e-^
/2 JV2I0 1 

in   Zsß'nj or ±uvW->RM> 

or   ±tff(y)-»^(y). 
'cos y/2   -sin 7/2 

,sin y/2    cosy/2 

£2^ äS Sää-^&S ?rrwWi 

tf^a) = e'(a/2)<\ 

fO   -A 
(71 = 

(0 n 

V 

°i»°2»°3 ^e the Pauli matrices. 

CT*=Ü   o> CT- ,0 -1, 

SU(n) Group Algebra 
Unitary matrices have a determinant equal to ±1. Special unitary matrices an» 

elements of unitary matrices which leave the determinant equd to -STZOSIS? 1 
independent parameters. SU(n) is a subgroup of U(n) for which the deterrmS equals ill 
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SU(2) Group Algebra 

SU(2) is a subgroup of SL(2,C). The are 22 -1 = 3 independent parameters for the 
special unitary group SU(2) of 2 x 2matrices. SU(2) is a Lie algebra such that for the 
angular      momentum      generators,      Jt,      the      commutation      relations      are 
[/,,/;] = ieijkJk,i,j,k = 1,2,3. The SU(2) group describes rotation in 3-dimensional space 
with 2 parameters (see below). There is a well-known SU(2) matrix relating the Euler 
angles of 0(3) and the complex parameters of SU(2) is: 

cos 

-sin 

I' 
2 

exp 'Ka + rY 
2 

sin 
2 

exp 
"-(a-/)" 

2 

.2. 
exp ~i(a-Y)~ 

2 
cos 

_2_ 
exp '-i(a + Y)~ 

2 

where a,ß,y are the Euler angles. It is also well known that a homomorphism exists 
between 0(3) and SU(2), and the elements of SU(2) can be associated with rotations in 
0(3); and SU(2) is the covering group of 0(3). Therefore, it is easy to show that SU(2) 
can be obtained from 0(3). These SU(2) transformations define the relations between the 
Euler angles of group 0(3) with the parameters of SU(2). For comparison with the above, 
if the rotation matrix R(a,ß,y) in 0(3) is represented as: 

f cos[a]cos[ß]cos[y]-sin[a]sin[y]     sin[a]cos[/3]cos[y] + cos[a]sin[y]    -sin[ß]cos[y]^ 
-cos[a]cos[ß]sin[y]- sin[a]cos[y]   -sin[a]cos[/3]sin[y] + cos[a]cos[y]    sin[ß]sin[y] 

V cos[a]sin[ß] sin[a]sin[ß] 

then the orthogonal rotations about the coordinate axes are: 

R:(oc) = 

f cos[a]    sin[a]   0^ 
-sin[a]   cos[a]   0 

0 0       1 

*,(£) = 
fcos[jS]   0   -sin[j3]>i 

0       1        0 
sin[j3]   0    cos[i3] 

^(7) = 

cos[y]    sin[y]   0^ 
-sin[y]   cos[y]   0 

0 0       1 

cos[j3] 

An isotropic parameter, C7, can be defined: 

Ü5 = -, 
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SA^AA'AAEquotie"' °f ft "d*or * 
Htk)= 

cos 

-sin 

ß 
L2J 

ß 

exp 

exp 

'*'(« + /)' 
2 

sin 

cos 

2 
£ 

UJ 

L^_ 
exp 

exp 

2 
-i'(a + y) l*W 

which is the relation between the Euler angles nf /!/?> O«H ^ 
S£/(2). However, there is not a uniaue on?t5™?j i ^ te<xmpkx parameters of 
correspond to 1 direction Ü? ^/^)   T^.~ •  Tv.°ne rdatl0n' for 2 rotations in 0(3) 
between 00> andtt^T *      * * "»r*«** or homomorhpi m 

In the case of a complex 2-dimensional vector (u,v): 

If we define 

cos 

-sin 

2 

~i 
2 

exp 

exp 

*(« + /)" 
2 

~i(a-Y) 
2 

sin 

cos 

L2 

2 

exp 

exp 

2 
-i(a + 7) 

Y*A 

vvy 

then 

a = cos — 

b = sin — 

|MA4) = 
a     6 

-ft*   a* K^), 
where 

a     b 

-b*   fl* 

SernW^ and d = a\ we have the 

ad-bc = l 
or 

aa-b{-b*) = l. 
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(M v) as0601™2 ±C (X'y'Z) COOrdinates with resPect to a complex 2-dimensioanl vector 

x = \(u2-v2), 

y=Yi(
u2+v2\ 

then SU(2) transformations leave the squared distance x2 + y2 + z2 invariant 
Every element of SU(2) can be written as: 

, where 
a     b 

-b"   a 

constraint: 

M2+|z>|2 = i. 

Now if we define: 

a = )>!-%, 

then the parameters v15 v2,y3, v4 indicate positions in SU(2) with the 

y2+y22+yl+y2
4=h 

which indicates that the group SU(2) is a 3-dimensional unit sphere in the 4-dimensional v- 
SSl^nm-T^l m closedf"™ on ** sphere can & shrunk to a^t ToAer words, SU(2) is simply-connected. 

SU(2) is the quantum mechanical "rotation group". 

SU(3) Group Algebra 
SU(3) has «-1 = 8 generators. 

SL(2,C) Group Algebra 

SL(2 Q* SPeCialHnearSmaP°f2X2 matdCeS °f deteminant X wi± comPlex entries is 

GL(n,R) Group Algebra 
The collection of real non-singular n x n invertible matrices is GL(nJl) or the real 

general linear group in n variables. '     ; 

SL(n,R) Group Algebra 
SLf«,/?; is a subgroup of GL(n,R) with determinant = +1. 

GL(n,C) Group Algebra 
The collection of complex non-singular nxn invertible matrices is GL(n,C) or the 

complex general linear group in n variables. ' 
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SL(n,C) Group Algebra 
SL(n,C) is a subgroup of GL(n,C) with determinant = +1. 

Sp(2,n) Group Algebra 
A 2«-dimensional space can be defined as: 

(X,y)=(*y+i - *"+y)+(*y+2 - *n+y)+...+(*yn - *2y) 
= x'Jy 

Sp(2,n) is a noncompact symplectic group.with form invariance: 

( 0     1\ 
J = 

Sp(2,n) satisfy: 

n      where   1n =nxn unit matrix. 

A'JA = J. 

Lie Group Algebras 
If a topological group is a group and also a topological space in which group 

operations are continuous, then Lie groups are topological groups which are also analytic 
manifolds on which the group operations are analytic. 

In the case of Lie algebras, the parameters of a product are analytic functions of the 
parameters of each factor in the product. For example, 

L(y) = L(cc)L(ß) 

where 

r = m,ß). 
This guarantees that the group is differentiable. The Lie groups used in Yang-Mills theory 
are compact groups, i.e., the parameters range over a closed interval. 

13.1  Calculations: 
The nonlinear Schrödinger equation (NLS) is: 

dq _i j?q      . ]2        ß(d3q    ,\adq\ 
sz   2 2a*-+w,+* ac^x 

where 

q is the normalized effective amplitude of the wave electric field: 

where g is the gain, ^ is the Kerr coefficient, X = lite 1(0, e = ACO/Q is a small parameter 
and E is the electric field intensity; 
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T is time normalized by the characteristic time, t0, of the side band spectrum, (Affl, )~\and 
the coordinate r, defined: T = e(t - k' z), where k' is the derivative of the wavenumbJr or 
dkjda evaluated at ©„ the angular frequency of the coherent light carrier and z is the axial 
distance. T is therefore: 

Zis the axial distance normalized by the dispersion distance, z0 = -t2
0/k", defined for the 

spectrum, Aa,, and, £ defined: g = s2/z. Z is therefore: 

Z = ± 
h 

Ihz. 
A = ~7~^~is ^linear hgher-order dispersion coefficient, o   t0 

The bound two-soliton solution oriV-soliton solution of the NLS equation is3: 

q = l\!h+Jk 

where 

(T?! cosh e2 expjVaJ + 772 cosh 61 exp[i oj) 

(„     .   .,    N 
A = cosh(01+02) + a±ä. cosh(ö1-ö2) + 7iÄTcos(cT1-a2), 

.^i-^J fa-^) 

ö, =^7 + 0,0   7 = 1,2 
0Oj = constant. 

The phase, a,, satisfies: 

da,     1   2 
 L = —Tit- 
dZ     2 " 

77 represents the amplitude as well as the pulse width of the soliton. 
This solution is found for the input pulse shape initial value: 

<7(7\0) = Asech7\ 

Fig. 13.1 shows examples for two values of r\x and 772 and with 6, = 77,7\ <r, = jjfz/2 for / 
— i,z. 

J ^     ffigher-order terms appear at distances longer than 10%. In this case, 77,, are 
defined as3: u 

1 Hasegawa, A. & Kodama, Y., Solitons in Optical Communications, Oxford U. Press, 1995. 
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T]12 = l±2exp 

Ssgpe1r3sionhOWS *e interaCtion of two ^ual ^P11^ pulses in the presence of third-order 

In order to increase the rate of pulse generation it is desirable to place solitons close 
to each other. However, because of the nonlinearity of the system solitons muSv 
interact, leading to deterioration in the repetition rate. In the case* o%S™ tS^S 
equal amplitude we consider the solution of the NLS equation with two sohton interaction 
with T0 = 7, corresponding to 7), = 1.072, t]2 = 0.952 and Z, = 26.3 (Fig 13 3) Z = Z12 
is the coUision distance of the pulses. p 8        h   c      *Z 

asymptotic torn™ °f °ff"PhaSe S°lit0nS ^ ecpd ^P1"1^5' *e NLS takes an 

2 

q(T,Z) - S77,secH(7' + ^Z-rot)exp[-z^r + /(7?/
2 -*f )/2 + fo*],   as Z -> ±oo. 

where 

K
-
! 2 = ±2exp 

7?lj2 = l±2exp 

sin 
.2 

.Zfi. 
2 

cos >o 

Fig. 13.4A shows the evolution of two unity amplitude sech pulses with an initial phase 
difference of 0O = ^4 and an initial pulse separation of T0 = 7. 

In the case of in-phase solitons with unequal amplitudes, 

"4>-i 
*7l,2=± - + sech 

2 

Rg. 13.5. shows the eigenvalues r]l2 for two unequal amplitude sech pulses as a function 
of the initial separation T0 and Fig. 13.4B. shows soliton interaction with two uneaual 
amplitude pulses, A0 = 1.1 and the initial pulse separation T0 = 7 ^ 
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Bound Tve-SaBbnSoidims 

Bound Two-SoSton Sob&rns 
VJ =3,m = te1zr=iMs 

W    . 

Fig. 13.1.Two examples of bound two-solitons. A: m = 3, TJ2= 1, giving Zp= jr/2; B: n, = 1 5 7},= 1 
giving Zp = 167C/5. • • ß     , 

W     , 

Fig. 13.2. Interaction of two equal amplitude pulses in the presence of third-order dispersion (A)- initial 
separation T0 = 10; (B) initial separation T0 = 7. 
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Sotitonixtemciioiiwithtwo «pud «npiitede pulses; 
ixitita ptäseseptmüion: T0 = 7, correspovSivg *>: m = 1.072; rf2 = 0352; 1T = 263. 

100 

Fig. 13.3. Soliton interaction with two equal amplitude pulses. Initial pulse separation T0 = 7. 
Evcb*ia*tfTmU^AiqimuSt*Pia™wiUäuW]**xatßnnctiif: Sf*U»üüim.li,m witktm, mtHfml tmfütOe /mbi; 

Ill 

Fig. 13.4. (A) Evolution of two unity amplitude seen pulses with an initial phase difference of 0O = n/4. 
Initial phase separation , T0 = 7. (B) Soliton interaction with two unequal amplitude pulses, A0 = 1.1 and 
the initial pulse separation r0 = 7. 
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2 4 6© 
Initial Pulse    Separation TO 

10 

Fig. 13.5. Eigenvalues, T]h2 for two unequal amplitude seen pulses as a function of the initial 
■*(>• 

separation, 
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14.0 The Bootstrap 

This section addresses analyses offered by the Bootstrap method for estimating the 
accuracy of a paramater estimator taken, in the instances addressed, as radar signal returns. 
Here, we show - for the first time to our knowledge - that the technique can be applied to 
distinguish targets. We also apply techniques taken from fractal theory and deterministic 
chaos theory to show that radar returns have both a fractal nature and are not time series 
produced by a random mechanism, but rather by a deterministic chaotic mechanism. We are 
able to show that the fractal properties of the power spectra, the variance and Fano Factor 
distinguish between two target returns. Use of embedding dimensional analysis also 
reveals the deterministic chaotic, as opposed to random, nature of the radar returns. The 
third report from Northwestern University is also included. 

The bootstrap4 is a technique for estimating the accuracy of a parameter estimator 
where additional re-samplings to gain additional raw data is not possible. In radar signal 
processing, large sample methods are not possible. Here we apply this technique to 
determine differences between two target returns (Fig. 14.1). The technique has only 
commenced to be used in radar processing5. The bootstrap does what in an ideal situation a 
radar operator would do if it were possible - that is, the operator would repeat again and 
again irradiating a stationary target (as if it were on a range). In the case of the bootstrap, 
the measurements in each time bin of the signal return are randomly reassigned and 
estimates are recomputed. This can be done hundreds, even thousands, of times and the 
results are treated as if they were real repeat test measurements. 

In Ref5 there is discussed an application in which the distribution of the estimated 
"close approach probability" is used as an index of collision risk in air traffic control. Here, 
we show - for the first time to our knowledge - that the technique can be applied to 
distinguish targets. 

4 Tibshirani, R J., Variance stabilization and the bootstrap. Biometrika, 75,433-444, 1988. 
Efron, B. & Tibshirani, R., Bootstrap methods for standard errors, confidence intervals and other measures 
of statistical accuracy. Statistical Science, 1, No 1,1217-1241,1989. 
Efron, B. & Tibshirani, R.J., An Introduction to the Bootstrap, Chapman & Hall, NY, 1993. 
Zouhir, A.M. & Boashash, B., The bootstrap and its application in signal processing. IEEE Signal 
Processing Magazine, January, 15, No. 1,56-76,1998; 

Politis, D.N., Computer-intensive methods in statistical analysis. IEEE Signal Processing Magazine 
January, 15, No. 1, 39-55, 1998; 
5 Nagaoka, S. & Amai, O., A method for establishing a separation in air traffic control using a radar 
estimation accuracy of close approach probability. /. Japan Ins. Navigation 82,53-60,1990; 
Nagaoka, S. & Amai, O., Estimation accuracy of close approach probability for establishing a radar 
separation minimum. /. Navigation 44, 110-121,1991. 
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Igt:l,Sig: #0001,lz:-2*.9899997,11:13.8099999» 
Tgt:i,sig:#iiE2,ii:-22.5300006,11:7.380ooom 

25 SO 75 100 125 ISO 175 

A. 
Fig. 14.1. Two radar return signals, A. and B. 

The basic principle is that if X = {XJtX2,...J[n} is a sample - in the present 
instance it is a radar return signal - it may be considered as a collection of n numbers drawn 
at random from an unspecified distribution, F. If # denotes a characteristic of F, e.g., its 

mean or variance, then if an estimator of ■&, ■&*, were known, then ■& could be judged to 
exceed a certain bound. 

Put another way, the boostrap procedure assumes that the sample X itself is the 
underlying distribution. By resampling from X many times and computing #* for each of 

the resamples a bootstrap dsitribution of $* is obtained that approximates the real 
distribution of ■&* and from which confidence intervals can be derived. 

A way this can be done is if the X's are considered to be independent and 
identically distributed random variables and are part of the sample distribution, F*, which 
is considered close to the true distribution, F, i.e., F* approaches F as n-*». 

Using a pseudorandom number generator, 100 samples of 177 values (Signal #1) 
and 812 values (Signal #2) were drawn, with replacement, from the Signals #1 and #2 
(Fig. 14.1). The means and standard deviations of these samples were then calculated and 
sorted. The results are shown in Fig. 14.2, with mean standard deviations and confidence 
limits indicated. 

Tgt:l,slg:«ooi,lz:-2l.9»99997,il:l!.1099999t     Bootstrap staMira »utus        rgtil,Cigi*"'2.Ui-2:-S300!>o<,lLi?.jsooooilt     Bootstrap ctmaira Deviations 

0.16   ■ 

A. B. 

Fig. 14.2. Bootstrap Standard Deviations: 100 random samples, with replacement, from the radar signal 
returns. In A. the mean standard deviation is 0.0476 and the 95% confidence interval is (0.0419,0.0539). In 
B. the mean standard deviation is 0.1154 and the 95% confidence interval is (0.09553,0.15114). 
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The bootstrap method also is able to indicate skewness of distributions. Fig. 14.3 
shows histogram plots of the data shown in Fig. 14.2 with superimposed probability 
density function of a Gaussian variable. It is evident that Signal #1 is skewed to the higher 
density values and Signal #2 to the lower. 

TOt:l,Siff:*0001 ,AZ:-2%. 9*99997,11:13. 8099999« 
Bootstnp sttadird Deviations Tgt:l,sig:#llS2,Az:-22.5300006,Al:7.380000111 

Bootitrtp sUndird ZMvütlccu 

■ootstr*p zstuutac Bootstrap KltiMt«! 

B. 

Fig. 14.3. Histograms of the bootstrap standard deviations based on random samplings of signal A. and 
signal B. The solid line indicates the probability density function of a Gaussian variable with a mean of 5.0 
and variance 2.5. 

14.1 Fractal Dimensions and Chaos 

The power spectra of fractal processes in time reflect the statistical properties of 
those properties. Self-similarity means that there is a relationship between the power at the 
high frequencies (fine resolution) and the power at the low frequencies (coarse resolution). 
This relationship has power law scaling and the energy at a given frequency is proportional 
to IIf. Therefore, /og(power spectrum) = -a /og(spatial frequency), and a can be found 
from the slope of the power spectrum curve in log-log plots. 

In the case of fractal processes, the total power at all frequencies in the power 
spectrum and the average power do not exist. If a > 1, (as in Fig. 14.4, below), the total 
energy increases as the lowest frequency used to measure it decreases, or, the longer the 
interval of data that is analyzed, the larger the total power in the power spectrum. If a < 1, 
the total power increases as the highest frequency used to measure it increases, or, the ever 
shorter intervals of data contain ever larger amounts of power. 
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Tqt 11,Sigi*0001,A2i-2*.3899397r*lil3.809*99« 
POWER 6MCTU 

Tgt:l,sig:#iiB2,Ar:-22.5300006,il:7.S80000ii» 
POKER SPZCOU 

10 20 50 100 200 

Lo9(har»ocLie) 
Log<po««  spectra) 

A. B 
Fig. 14.4. Log-Log plots of spatial frequency versus the power spectrum. The solid line indicates the fractal 
power spectrum relation: P(f) = 1/f. The slope of A is -2.98985; of B is -2.89493. 

In the case of fractal processes, the moments (mean, variance, etc) deDend on the 
resolution used to measure them. Therefore, multiple sampling of the ignals show in Fk 
1 at differen average temporal sampling windows, reveals the dependent of Somenfs 
on the sampling window resolution. The scaling relationship describes this deSndencTon 
Ae resoluüon and it is characterized by the fractal dimension, d. Aga£ cSatiTtne 
slope of a log-log plot, this time of the moments, which for Fig. 145 are Ae sSrfdard 

Ä35 VemS ±& T^- SampHng window' Provides Ae method  T^e 3Ä values of d are given in the caption to Fig. 14.5. umenng 

Igtü.Sig: #0001 ,«:-2».9899997,11:13.8099999« 
KW CSTMUÄRD BeraHZMTS) 

1 »■»      S 3 S 7 10 15      20 
Tgt:l.Sigi#116J,«2:-JJ.5300006,»l:7.38000011« 

Kg. 14.5. Log-Log plots of the standard deviations versus sampling time windows.'lhe solid line indicates 
how a moment - m tins case the standard deviation, depends on the resolution (temporal samplingwTd™ 
duration) used to measure it. The slope of A is 0.1385; of Bis 0.05425. pungwinaow 

According to Takens' theorem^, the entire phase space set of a deterministic chaotic 
SST52i? COnsTtCd fr°m °ne *"**»** variable1. A consequencTofTSremls 
Jat a deterministic: chaotic process will exhibit a phase space set^im increasing^ ±1 
Jmension of the phase space, or the number of values of the data taken at aS to nroduce 
tiie phase space set (the embedding dimension). Thus, the SdiSnsÄ?a 
deterministic^chaotic process will reach a limiting value. However, if thHScess is 
random, the fractal dimension of the phase space set increases as the emr^cfegrtmen ion 
increases, i.e., as the number of values of the data taken at a time to SS Ae pS 

llhim"Ran<1 & Y°Ung'<P(LS)DynamiCalSystemsmd™«Ience,Springer-Verlag,NY,pp. 366- 
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22.5 u rS •S- ^ ^ C,aSe of *« deterministic chaos process, the time series was 
generated by a finite set of independent variables, and in the case of a randoSprocess toe 
time senes is generated by an infinite set of independent variables. P ' 

Fig. 14.6 shows that as the embedding dimension increases both ««mal« An „«* 
.^ffi^^ ^ ^--n father, both^iS Sg tut 
Si! tK f*S3- ^ ?eoüme senes for ^ »gnals were generated by a deterministic rule that can be described by 3 equations with 3 independent variables aetenm™tic 

»gtn ,suj'-*ooa\ ,II:-M.9099997,Uns.«O*»»»M 
nuCTU DDCXSnm 

Tgt:l,Sig:#0001,»z:-2|.9e999S7,Ai:13t809g99fl| 

FJUCCU. DBflDrSJOXS 

-      " ■«• 00 100 HI 
# V«2UM  of to* <UU Uk«i »t * tiff* 

tr*ct*l di«msian 

,200 "° SOO Ann # vala« of the dtu t*k«n at itl» 
vs 

fractal diawuion A. B 

Fig. 14 6.   The fractal dimension of a phase space set of a random time series increases as the emhaMhur 
djmensxon mcreases. Here, it is shown that as the embedding dimension incmaS^^Ä 

atr^l   Tv ^ 5?toe ^ Phase *« set>> ** *«** ^»sion of i2^~ £ poaches t hrmtmg value. The fractal dimensions are of the power spectra as in Fig  144^STTS r^^r^^r^h—with Fig-l4A rfmai **<££*& 
A*    A 

AS ^ s^?0?1 Properties (e.g., the mean and variance) of a fractal time series 
SSI?" ** T°lm0n,USed t0 measure ^ * is not appropriate ttTmeSe tiese statistical properties at only one resolution. However it is aDDronriate tn EfZrSL^ 
these statistical properties depend on the resolution £d 0IS»ÄS 
is a statistical measure appropriate for measuring the statistical nSnerfefo? SSJ 

Fawforn? £ * ddSned-a8 ^ v,?noe **« * *e mea^ Sfllo?Sr has a P^r law form that is proportional to /-* where r is the resolution and b is related to the S3 

STTÄ taä?^ofr ^ S!°Pe °f ü**^ SfiSS Fan?g£ 
S sth7ÄÄre lig^als omgT   g ^ °f ** ** "^ ** ' *7 

The fractal dimension, d, is related to b by: 

d = ß-b 
a 

where a and ß are exponents determining how the measured property depends on the 
number of samples and the resolution. We have established (Fig 14 6) S tiilnroce,! 
generating the signals is deterministic chaotic and described by% inä^LflSS! 
Therefore ß = 3 (and a = 1). From the values for b calculated from Fig. 14 7 and shown in 

S^52Ä^S™ ^ ^"^ "^14-4 **14-6'<* ^ 
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B. 
Fig. 147. The Fano factor, F, is equal to the variance divided by the mean Here are Ln* T ™ «w»   t * 
Fano Factor as a function of the temporal length of the saLli™ US  ™. g P ^ 
relationship of the Fano factor with resp'ect to ttcZ^^^Z^pa t T* F 

SSSSf *"*dtoBMtal (solid line)-In "» ~ * A- * -™tZ tttF^o?l*lbJs- 
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15.0 Summary Recommendations 

As was stated in 13 State of the Art Benchmark from which BSEI 
Research Proceeds, we have sought to either identify or create methods different from 
state-of-the-art for solving the BMDO problem of providing an ultraMghYesolS ensor" 
which can identify missile.from decoy. We advocate senior/radar systems us^ng pul es 
shorter than the length of the target, adaptive time-frequency analysis meS which 
preserve target backscattenng centers and resonances, and pattern identification^of target 
and decoy 

In particular, we have created 

• extensions of the Gabor transform (CQOW) 
• adaptive methods 
• methods involving the instantaneous phase 
• mutual information methods 
• Zak transform methods 

which can achieve preserve target backscattering and target resonance and provide the input 
for procedures permitting pattern identification of target and decoy. 

Furthermore, we have created methods using 

• the bootstrap 
' fractal dimension 
1 Fano number 
1 deterministic chaos methodologies 

to provide precision in identification of target and decoy. 

™,w?Ur rec°tI?ne^0? fOT *e next step to be taken is to implement these new 
methods in emulation or real-time systems. 
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